网站首页  词典首页

请输入您要查询的论文:

 

标题 高光谱成像及近红外技术在鸡肉品质无损检测中的应用
范文

    摘 要:高光谱成像与近红外光谱(near infrared spectroscopy,NIR)技术是现代食品检测领域的重要手段,本研究对2 种技术在鸡肉品质无损检测中的预测精度进行研究。选用62 份新鲜程度不同的鸡胸肉,提取其高光谱感兴趣区域(region of interest,ROI)的光谱曲线,并测定样品的挥发性盐基氮(total volatile base nitrogen,TVB-N)含量和菌落总数(total viable count,TVC),利用OPUS 6.0光谱处理软件搜寻最佳的光谱预处理和波段组合,分别建立2 个指标的偏最小二乘法(partial least square,PLS)定量分析模型。NIR样本选用30 份新鲜程度不同的鸡胸肉,測定其TVB-N含量和TVC,建立PLS的交叉验证模型。结果表明:利用高光谱的ROI平均光谱建立的TVB-N含量与TVC模型的相关系数(R2)分别为0.965和0.919,均方根误差(root mean square error of cross validation,RMSECV)分别为0.121和0.215;利用NIR建立的TVB-N含量与TVC预测模型的R2分别为0.801和0.780,RMSECV分别为0.232和0.312。由此可见,基于高光谱的ROI区域光谱建立的预测模型在鸡肉品质无损检测中具有比NIR更高的预测精度。

    关键词:鸡肉新鲜度;高光谱成像;偏最小二乘法;近红外光谱

    Abstract: Hyperspectral imaging and near infrared spectroscopy (NIR) are two important techniques in modern food detection. This study intended to study the prediction accuracy of the two techniques for non-destructive chicken quality detection. Totally 62 chicken breast samples with different freshness were selected for hyperspectral imaging. Spectral data were extracted from the region of interest (ROI). Total volatile base nitrogen (TVB-N) content and total viable count (TVC) were measured. The optimal combination of spectral pretreatment and band was searched by OPUS software (version 6.0). A predictive model to quantify TVB-N and TVC was established by means of partial least squares (PLS) regression, respectively. Moreover, another 30 samples with different freshness were used to develop a PLS model for predicting TVB-N content and TVC by NIR spectroscopy, respectively. The performance of each model was evaluated using

    cross-validation. The results showed that the correlation coefficients (R2) of the TVB-N content and TVC prediction models developed from the ROI average spectra from hyperspectral images were 0.965 and 0.919 with a root mean square error of cross validation (RMSECV) of 0.121 and 0.215, respectively, while those of the prediction models established from NIR spectra were 0.801 and 0.780 with a RMSECV of 0.232 and 0.312, respectively. It can be concluded that the model based on ROI spectra from hyperspectral images has higher prediction accuracy for chicken quality compared with the NIR model.

    Key words: chicken freshness; hyperspectral imaging; partial least squares (PLS); near infrared spectroscopy (NIR)

    DOI:10.7506/rlyj1001-8123-201712006

    中图分类号:TS251.1 文献标志码:A 文章编号:1001-8123(2017)12-0030-06

    引文格式:

    邢素霞, 王睿, 郭培源, 等. 高光谱成像及近红外技术在鸡肉品质无损检测中的应用[J]. 肉类研究, 2017, 31(12): 30-35. DOI:10.7506/rlyj1001-8123-201712006. http://www.rlyj.pub

随便看

 

科学优质学术资源、百科知识分享平台,免费提供知识科普、生活经验分享、中外学术论文、各类范文、学术文献、教学资料、学术期刊、会议、报纸、杂志、工具书等各类资源检索、在线阅读和软件app下载服务。

 

Copyright © 2004-2023 puapp.net All Rights Reserved
更新时间:2025/3/21 20:08:00