标题 | 共心双环势阱中自旋轨道耦合作用玻色爱因斯坦凝聚体的基态研究 |
范文 | ![]() ![]() 摘 要: 研究了共心双环势阱中,自旋轨道耦合下的玻色爱因斯坦凝聚体的基态结构,发现随着自旋轨道耦合的变化,耦合系统呈现出丰富的基态结构。仅在一个方向加入自旋轨道耦合并随之增大时,系统基态密度呈现不均匀的角相分离分布,其相图显示它们仍然为驻波态;随着另一个垂直方向自旋轨道耦合强度的引入并逐渐增大到与原来方向相同,形成各向同性自旋轨道耦合时,系统基态密度逐渐形成均匀角相分离分布,从相位图中研究发现,各向同性自旋轨道耦合作用使系统基态产生了大量涡旋。 关键词: 自旋轨道耦合; 玻色?爱因斯坦凝聚; 共心双环势阱; 基态 中图分类号: TN201?34 文献标识码: A 文章编号: 1004?373X(2015)09?0135?03 Abstract: The ground state structure of spin?orbit?coupled Bose?Einstein condensates in concentrical dual?ring potential well is studied, with changing of the spin?orbit?coupled, multiple ground state structures are appearing in the coupled system. If the spin?orbit?coupled is added increasingly only in one direction, inhomogeneous distribution of the azimuthal phase separation is appeared in the ground state density, however it is still the stating wave from the phase graph showing. The other spin?orbit?coupled strength is added increasingly in vertical direction until the same with the original direction, when the isotropy of spin?orbit?coupled is shaped, homogeneous distribution of the azimuthal phase separation is appeared gradually in the ground state density. Investigation from phase diagram shows that a large number of vortexes in ground state system are generated by the function of isotropy spin?orbit?coupled. Keywords: spin?orbit?coupled; Bose?Einstein condensate; concentrical dual?ring potential well; ground state 0 引 言 最近几年,人工合成Abelian规范势在实验中取得了巨大成功,引起了冷原子研究领域研究者的广泛兴趣[1?4],他们开始考虑将其用于产生中性原子的自旋轨道耦合(SOC)并取得了较多的理论成果[5?8];Wang等人发现玻色爱因斯坦凝聚体(BEC)的波函数呈现出非平凡结构;赝自旋为[12]的两分量自旋轨道耦合玻色爱因斯坦凝聚体,随着相互作用强度的变化,基态波函数呈现出“平面波函数”和“驻波相”[9?10]。 研究者已经广泛研究了囚禁于简谐势阱中的SOC作用玻色爱因斯坦凝聚体 [11?14],Zhang等人详细研究了共心双环势阱中SOC作用玻色爱因斯坦凝聚体,包括无外势旋转[15]、有外势旋转[16]和赝自旋为1的三组分原子组成的玻色爱因斯坦凝聚体等[17],他们研究发现引入自旋轨道耦合将大大丰富玻色爱因斯坦凝聚体的基态结构和产生丰富的相变。其中文献[15]研究发现引入自旋轨道耦合将增强原子间的相互作用,系统基态密度分布能够产生均匀的角向分离、径向相变和涡旋,相位图显示只要有自旋轨道耦合加入,系统就会产生涡旋。本文在此基础上,先研究只有一个方向有自旋轨道耦合并随之增加时,系统基态密度分布和相位分布情况,再研究固定一个方向自旋轨道耦合强度,在垂直于此方向上引入并加大自旋轨道耦合强度,各向异性自旋轨道耦合过渡到各向同性自旋轨道耦合的基态相变过程,通过研究以期发现各向异性自旋轨道耦合强度对BEC系统基态的影响。 1 理论模型 2 研究结果 在本文研究中,赝自旋向上和向下的原子初始波函数均取为高斯函数。引入自旋轨道耦合,将大大扩大系统调控参数空间的范围,为了简便起见,固定种内原子相互作用强度为[g=g11=g12=15,]和种间原子相互作用强度[g12=g21=75,]研究不同的自旋轨道耦合强度对系统基态的影响。 由图1(a)知,当系统没有自旋轨道耦合时,因系统参数[g2 选取[y]方向自旋轨道耦合强度[κy=2.0,][x]方向自旋轨道耦合强度从[κx=0]开始增加到[κx=2.0,]自旋轨道耦合逐渐从各向异性变换到各相同性。图2为相互作用强度[g=15,g12=75,][y]方向自旋轨道耦合强度为[κy=2.0,][x]方向自旋轨道耦合强度[κx=0,0.5,1.0,1.5,2.0](对应于图2(a)~(e))时,赝自旋-1/2的自旋轨道耦合凝聚体的基态密度相分布图。 3 结 论 本文采用虚时演化和中心差分数值法,研究了共心双环势阱中自旋轨道耦合玻色爱因斯坦凝聚体的基态结构问题,研究发现:只有一个方向有自旋轨道耦合时,共心双环势阱中凝聚体的基态密度呈现出不均匀的角相分离分布,其相位图显示其基态只是条状驻波态;不论这个方向上的自旋轨道耦合强度怎么增大,系统基态结构始终是驻波态不会产生涡旋态;只有在另一个方向引入自旋轨道耦合后,系统基态才可出现均匀的角相分离分布并产生逐渐均匀的涡旋态;随着均匀自旋轨道耦合的引入和加强,原子基态密度分布还将出现径向分离。 参考文献 [1] GRISHKEVICH S, SAENZ A. Theoretical description of two ultracold atoms in a single site of a three?dimensional optical lattice using realistic interatomic interaction potentials [J]. Physical Review A, 2009, 80(1): 3403?3421. [2] JUZELIUNAS G, RUSECKAS J. Non?abelian gauge potentials for ultracold atoms with degenerate dark states [J]. Physical Review Letters, 2005, 95(1): 404?411. [3] AICHHORN M, HOHENADLER M, TAHAN C, et al. Quantum fluctuations, temperature, and detuning effects in solid?light systems [J]. Physical Review Letters, 2008, 100(21): 6401?6405. [4] LIN Y J, COMPTON R L, PERRY A R, et al. Bose?Einstein condensate in a uniform light?induced vector potential [J]. Physical Review Letters, 2009, 102(13): 401?409. [5] WANG Chun?ji, GAO Chao, JIAN Chao?ming, et al. Spin?orbit coupled spinor Bose?Einstein condensates [J]. Physical Review Letters, 2010, 105(16): 403?406. [6] XU Xiao?qiang, HAN Jung?hoon. Spin?orbit coupled Bose?Einstein condensate under rotation [J]. Physical Review Letters, 2011, 107(20): 401?411. [7] LIN Y J, COMPTON R L, JIMENEZ G K, et al. Synthetic magnetic fields for ultracold neutral atoms [J]. Nature, 2009, 462(81): 628?632. [8] DIAZ B J, GUILLEUMAS M, LEWENSTEIN M, et al. Josephson oscillations in binary mixtures of F=1 spinor Bose?Einstein condensates [J]. Physical Review A, 80(23): 616?619. [9] JI A C, LIU W M, SONG J L, et al. Dynamical creation of fractionalized vortices and vortex lattices [J]. Physical Review Letters, 2008, 101(1): 402?407. [10] ZHAI Hui. Spin?orbit coupled quantum gases [J]. International Journal of Modern Physics B, 2012, 26(1): 723?728. [11] HU H, RAMACHANDHRAN B, PU H, et al. Spin?orbit coupled weakly interacting Bose?Einstein condensates in harmonic traps [J]. Physical Review Letters, 2012, 108(1): 402?406. [12] SINHA S, NATH R, SANTOS L. Trapped two?dimensional condensates with synthetic spin?orbit coupling [J]. Physical Review Letters, 2011, 107(27): 401?405. [13] HU Hui, LIU Xia?ji. Critical temperature of a Rashba spin?orbit?coupled Bose gas in a harmonic trap [J]. Physical Review A, 2012, 85(1): 3619?3623. [14] XU X Q, HAN J H. Spin?orbit coupled Bose?Einstein condensate under rotation [J]. Physical Review Letters, 2011, 107(20): 401?403. [15] ZHANG Xiao?fei, DONG Rui?fang, LIU Tao, et al. Spin?orbit?coupled Bose?Einstein condensates confined in concentrically coupled annular traps [J]. Physical Review A, 2012, 86(6): 3628?3631. [16] ZHANG Xiao?fei, GAO Ri?sheng, WANG Xin, et al. Bose?Einstein condensates in concentrically coupled annular traps with spin?orbit coupling and rotation [J]. Physics Letter A, 2013, 377(16): 1109?1113. [17] ZHANG Xiao?fei, LI Biao, ZHANG Shou?gang. Rotating spin?orbit coupled Bose?Einstein condensates in concentrically coupled annular traps [J]. Laser Physics, 2013, 23(10): 5501?5504. [18] 陈光平.囚禁于简谐势+四次势阱中两组分旋转玻色爱因斯坦凝聚体[J].四川文理学院学报,2014(5):30?33. |
随便看 |
|
科学优质学术资源、百科知识分享平台,免费提供知识科普、生活经验分享、中外学术论文、各类范文、学术文献、教学资料、学术期刊、会议、报纸、杂志、工具书等各类资源检索、在线阅读和软件app下载服务。