一道几何证明题思路剖析

对试题的研究是教师在教学和复习中经常做的一件事,通过研究把蕴涵其中的数学思想方法揭示出来,挖掘出隐含的问题的本质属性.不但可以提高学生的空间想象、逻辑思维能力、分析和解决问题的思维技能,优化数学的思维品质,而且还可以培养学生探索创新的能力.某QQ群中热议的一道试题,引起了笔者的思考,本文尝试对第(1)小题的参考答案进行突破,请同行斧正.
从命题者提供答案看,是由条件BA=BA′联想到等腰三角形,进而想到证明BD为底边AA′的高,思路是顺畅的,也无可厚非,但证明用了3次三角形相似,显然超过了课程标准要求.这促使笔者深思、细研,思索着有没有其它解法?
解题是由条件出发,运用已有定义、定理、法则,通过运算、推理得到结论的过程.因此,题干条件是什么、能得到什么结论、需要什么条件、条件与结论之间用什么方法打通、有哪些思路,这是解题者必须思考的问题.那么该题有其它通性通法吗?
结合本题,结论是证明D为AA′的中点,那么,遇到中点问题(已知中点或证明中点)我们还可以想到什么呢?从另一角度考虑,是否可以构造“8”字型或“A”字型或其他思路,这难道不是通性通法呢?
3解题反思
3.1关注解题通法,增强学生的解题能力
优秀的几何题一般存在多种解法,而辅助线通常是解决问题的桥梁,巧妙的辅助线常能“柳暗花明又一村”,与标准答案不同的上述几种解法,其巧妙之处在于添加了辅助线,辅助线使未知与已知有了更紧密的联系,无需通过证明3次相似,证明过程大为简洁,体现了数学方法的多样性,同时也从侧面说明这是一道难得的好题,是训练学生数学思维的好素材.由此可见,通过一题多解,可以加深和巩固学生所学知识,充分运用学过的知识,从不同的角度思考问题,采用多种方法解决问题,这有利于学生加深理解各部分知识横向和纵向的内在联系,掌握各部分知识的转化关系,从而达到培养思维广阔性的目的.
3.2重视学会解题,拓展学生的思维空间
在解题教学中,题目是载体,解题是过程,方法和规律的揭示、策略和思想的形成是目的,因此,解题教学切忌就题论题,片面追求容量,忽视教学功能的发掘、开发.引导学生学会解题层面的回顾与反思:如解题中用到了哪些知识?解题中用到了哪些方法?这些知识和方法是怎样联系起来的?自己是怎么想到它们的?困难在哪里?关键是什么?遇到什么障碍?后来是怎么解决的?是否还有别的解决方法、更一般的方法或更特殊的方法、沟通其他学科的方法、更简单的方法?同样的方法能用来处理更一般性的命题吗?命题能够推广吗?条件能减弱吗?结论能加强吗?这些方法体现了什么样的数学思想?调动这些知识和方法体现了什么样的解题策略?
3.3关注模型思想,强化学生的识模能力
拿到一道试题,在理解题意后,立即思考问题属于哪一主题、哪一章节?与这一章节的哪个类型的问题比较接近?解决这个类型的问题有哪些方法?哪个方法可以首先拿来试用?这一想,下手的地方就有了,前进的方向也大体确定了,这就是解题中的模式识别.运用模式识别可以简洁回答解题中的两个基本问题,从何处下手?向何方前进?我们说就从辨认题型模式入手,向着提取相应方法、使用相应方法解题的方向前进.正如本文中所提到的构造“A字型”、“8字型”或“共点双垂直型”等基本模型,因此在平时的教学中,教师要引导学生从习题中提炼出常用的基本模型,再推广模型,并通过典型问题帮助学生认识模、用模,从而强化学生对基本模型的理解.
参考文献
[1]钱德春.对数学解题“繁”与“简”的辨析与思考[J].中学数学杂志,2015
(10):17-21
[2]沈岳夫.对一道“新定义”型折叠题的解法探析[J].数理化学习(初中版),2015(11):2-3
[3]汪宗兴,李道华.借助典型试题加强回顾反思[J].中学数学(初中版),2015(9):81-84
相关文章!
  • 遇等腰 思讨论

    王秋月 刘现超等腰三角形是特殊的三角形.它既具有一般三角形的性质,又具有自己的特殊性质,若题目中没有明确边、角的关系,解题时要进行

  • 现代档案管理的创新模式

    任娅妮摘要:当前我国的档案管理机制相对老化、模式较为陈旧,与现代的信息社会化进程不相匹配。传统档案管理工作的采集、整理、保管、利用

  • 质谱法测定水中溶解氙的含量及

    李军杰+刘汉彬 张佳+韩娟+金贵善+张建锋<br />
    <br />
    <br />
    <br />
    摘要 利用设计的一套水样中提取并分离Xe的装置,与稀有气体质谱