基于残差观测器的电机迭代学习控制系统
杨亚楠 秦雪元 李小青 李超峰
关键词: 推杆电机; 闭环控制系统; 残差观测器; 迭代学习控制; 机电耦合; 转速补偿
中图分类号: TN876?34 ? ? ? ? ? ? ? ? ? ? ? ? ?文献标识码: A ? ? ? ? ? ? ? ? ? ? ? ? 文章编号: 1004?373X(2019)03?0119?03
Abstract: A motor′s iterative learning control method based on residual error observer was designed. The electromechanical coupling model of the transmission system was established. The iterative learning control for speed compensation is carried out under the framework of residual error generator control based on observer. Robustness and disturbance rejection performances of the motor speed control system under the influence of load disturbance are improved. The simulation results show that the control system can effectively reduce the amplitude of variation of motor speed under the influence of load disturbance, and improve the stability of the closed?loop control system.
Keywords: push rod motor; closed?loop control system; residual error observer; iterative learning control; electromechanical coupling; speed compensation0 ?引 ?言
在工业生产需要直线驱动装置的过程中,通常采用 “旋转电机+滚珠丝杠”(推杆电机)的驱动方式和直线电机的驱动方式。相对于直接带动负载的直线电机驱动方式,推杆电机接入传动装置后也能产生有效的推力,设计不同的传动装置还能使负载获得多角度的推力。推杆电机拥有成本低、控制性能稳定的特点,尤其是在低速运行状态下,推杆电机相比于直线电机能够提供较大转矩[1?2]。
推杆电机采用永磁同步直流电机,其调速系统包括模型自适应迭代学习控制、模糊控制、神经网络控制、滑模控制等许多现代控制理论[3?6]。虽然上述方法能够减少扰动对系统的影响,但是部分方法对模型参数依赖性强,且算法复杂程度高,对于工况复杂的电机控制系统,存在大量干扰。
因此,本文结合上述文献思想设计一种基于观测器容错控制框架下的转速补偿迭代学习控制系统,在该控制框架下,能够实时监测负载扰动,产生残差之后进行转速的迭代学习控制,提高了系统的稳定性。系统仿真表明,该控制器相对于传统控制器具有快速性、无超调等优点,对负载转矩具有较强的鲁棒性。
4 ?结 ?论
本文针对推杆电机直流调速系统在负载扰动下的系统动态性能下降问题,设计一种残差观测器下电机迭代学习的控制方法。分析电机系统与传动系统的机电耦合数学模型,在基于观测器的残差生成器控制框架下进行转速补偿的迭代学习控制,这样既不会影响闭环系统原有的稳定性,又避免了单纯进行复杂的迭代学习计算。结果表明,该控制方法能有效抑制负载扰动,使系统获得较好的鲁棒性,控制效果优于传统的PD控制器。参考文献
[1] 叶云岳.直线电机原理与应用[M].北京:机械工业出版社,2000:1?10.
YE Yunyue. Principle and applications of linear motor [M]. Beijing: China Machine Press, 2000: 1?10.
[2] 江城城,王志勇,王夏杰.基于推杆电机的全向移动多功能叉车的设计[J].机械研究与应用,2016,29(1):163?165.
JIANG C C, WANG Z Y, WANG X J. Design of omni?directional mobile multi?function forklift based on the push?rod motor [J]. Mechanical research and application, 2016, 29(1): 163?165.
[3] 李紅梅,张志全,李忠杰.减小小功率开关磁阻电机转矩脉动的迭代学习控制[J].电工技术学报,2006(10):67?70.
LI H M, ZHANG Z Q, LI Z J. Iterative learning control to reduce torque fluctuation of small power switch reluctance machine [J]. Transactions of China electrotechnical society, 2006(10): 67?70.
[4] 夏长亮,郭培健,史婷娜,等.基于模糊遗传算法的无刷直流电机自适应控制[J].中国电机工程学报,2005,25(11):129?133.
XIA C L, GUO P J, SHI T N, et al. Control of brushless DC motor using genetic algorithm based fuzzy controller [J]. Proceedings of the Chinese society for electrical engineering, 2005, 25(11): 129?133.
[5] 钱坤,谢寿生,屈志宏,等.带补偿的神经网络辩识器在异步电机调速系统中的应用[J].中小型电机,2004,31(4):40?43.
QIAN Kun, XIE Shousheng, QU Zhihong, et al. Neural network identifier with fuzzy logic compensation applied to induction motor dynamic system [J]. Small and medium electric machines, 2004, 31(4): 40?43.
[6] 李政,胡广大,崔家瑞,等.永磁同步电机调速系统的积分型滑模变结构控制[J].中国电机工程学报,2014,34(3):431?437.
LI Zheng, HU Guangda, CUI Jiarui, et al. Sliding?mode va?riable structure control with integral action for permanent magnet synchronous motor [J]. Proceedings of the CSEE, 2014, 34(3): 431?437.
[7] 陈伯时.电力拖动自动控制系统[M].北京:机械工业出版社,2013:23?55.
CHEN Boshi. Control systems of electric drives [M]. Beijing: China Machine Press, 2013: 23?55.
[8] 杨旭,姜银光,彭开香,等.双闭环直流调速系统动态补偿控制器的在线优化设计[J].中国电机工程学报,2017,37(8):2409?2418.
YANG Xu, JIANG Yinguang, PENG Kaixiang, et al. The dynamic compensation controller implementation and optimization on double loop DC system [J]. Proceedings of the CSEE, 2017, 37(8): 2409?2418.
[9] 张丽萍,杨富文.迭代学习控制理论的发展动态[J].信息与控制,2002(5):425?429.
ZHANG Liping, YANG Fuwen. Development of iterative learning control [J]. Information and control, 2002(5): 425?429.
关键词: 推杆电机; 闭环控制系统; 残差观测器; 迭代学习控制; 机电耦合; 转速补偿
中图分类号: TN876?34 ? ? ? ? ? ? ? ? ? ? ? ? ?文献标识码: A ? ? ? ? ? ? ? ? ? ? ? ? 文章编号: 1004?373X(2019)03?0119?03
Abstract: A motor′s iterative learning control method based on residual error observer was designed. The electromechanical coupling model of the transmission system was established. The iterative learning control for speed compensation is carried out under the framework of residual error generator control based on observer. Robustness and disturbance rejection performances of the motor speed control system under the influence of load disturbance are improved. The simulation results show that the control system can effectively reduce the amplitude of variation of motor speed under the influence of load disturbance, and improve the stability of the closed?loop control system.
Keywords: push rod motor; closed?loop control system; residual error observer; iterative learning control; electromechanical coupling; speed compensation0 ?引 ?言
在工业生产需要直线驱动装置的过程中,通常采用 “旋转电机+滚珠丝杠”(推杆电机)的驱动方式和直线电机的驱动方式。相对于直接带动负载的直线电机驱动方式,推杆电机接入传动装置后也能产生有效的推力,设计不同的传动装置还能使负载获得多角度的推力。推杆电机拥有成本低、控制性能稳定的特点,尤其是在低速运行状态下,推杆电机相比于直线电机能够提供较大转矩[1?2]。
推杆电机采用永磁同步直流电机,其调速系统包括模型自适应迭代学习控制、模糊控制、神经网络控制、滑模控制等许多现代控制理论[3?6]。虽然上述方法能够减少扰动对系统的影响,但是部分方法对模型参数依赖性强,且算法复杂程度高,对于工况复杂的电机控制系统,存在大量干扰。
因此,本文结合上述文献思想设计一种基于观测器容错控制框架下的转速补偿迭代学习控制系统,在该控制框架下,能够实时监测负载扰动,产生残差之后进行转速的迭代学习控制,提高了系统的稳定性。系统仿真表明,该控制器相对于传统控制器具有快速性、无超调等优点,对负载转矩具有较强的鲁棒性。
4 ?结 ?论
本文针对推杆电机直流调速系统在负载扰动下的系统动态性能下降问题,设计一种残差观测器下电机迭代学习的控制方法。分析电机系统与传动系统的机电耦合数学模型,在基于观测器的残差生成器控制框架下进行转速补偿的迭代学习控制,这样既不会影响闭环系统原有的稳定性,又避免了单纯进行复杂的迭代学习计算。结果表明,该控制方法能有效抑制负载扰动,使系统获得较好的鲁棒性,控制效果优于传统的PD控制器。参考文献
[1] 叶云岳.直线电机原理与应用[M].北京:机械工业出版社,2000:1?10.
YE Yunyue. Principle and applications of linear motor [M]. Beijing: China Machine Press, 2000: 1?10.
[2] 江城城,王志勇,王夏杰.基于推杆电机的全向移动多功能叉车的设计[J].机械研究与应用,2016,29(1):163?165.
JIANG C C, WANG Z Y, WANG X J. Design of omni?directional mobile multi?function forklift based on the push?rod motor [J]. Mechanical research and application, 2016, 29(1): 163?165.
[3] 李紅梅,张志全,李忠杰.减小小功率开关磁阻电机转矩脉动的迭代学习控制[J].电工技术学报,2006(10):67?70.
LI H M, ZHANG Z Q, LI Z J. Iterative learning control to reduce torque fluctuation of small power switch reluctance machine [J]. Transactions of China electrotechnical society, 2006(10): 67?70.
[4] 夏长亮,郭培健,史婷娜,等.基于模糊遗传算法的无刷直流电机自适应控制[J].中国电机工程学报,2005,25(11):129?133.
XIA C L, GUO P J, SHI T N, et al. Control of brushless DC motor using genetic algorithm based fuzzy controller [J]. Proceedings of the Chinese society for electrical engineering, 2005, 25(11): 129?133.
[5] 钱坤,谢寿生,屈志宏,等.带补偿的神经网络辩识器在异步电机调速系统中的应用[J].中小型电机,2004,31(4):40?43.
QIAN Kun, XIE Shousheng, QU Zhihong, et al. Neural network identifier with fuzzy logic compensation applied to induction motor dynamic system [J]. Small and medium electric machines, 2004, 31(4): 40?43.
[6] 李政,胡广大,崔家瑞,等.永磁同步电机调速系统的积分型滑模变结构控制[J].中国电机工程学报,2014,34(3):431?437.
LI Zheng, HU Guangda, CUI Jiarui, et al. Sliding?mode va?riable structure control with integral action for permanent magnet synchronous motor [J]. Proceedings of the CSEE, 2014, 34(3): 431?437.
[7] 陈伯时.电力拖动自动控制系统[M].北京:机械工业出版社,2013:23?55.
CHEN Boshi. Control systems of electric drives [M]. Beijing: China Machine Press, 2013: 23?55.
[8] 杨旭,姜银光,彭开香,等.双闭环直流调速系统动态补偿控制器的在线优化设计[J].中国电机工程学报,2017,37(8):2409?2418.
YANG Xu, JIANG Yinguang, PENG Kaixiang, et al. The dynamic compensation controller implementation and optimization on double loop DC system [J]. Proceedings of the CSEE, 2017, 37(8): 2409?2418.
[9] 张丽萍,杨富文.迭代学习控制理论的发展动态[J].信息与控制,2002(5):425?429.
ZHANG Liping, YANG Fuwen. Development of iterative learning control [J]. Information and control, 2002(5): 425?429.