基于双模式模型预测控制算法的多智能体编队控制

张颖++王明兴






DOI:10.13340/j.jsmu.2016.04.015
文章编号:1672-9498(2016)04008205
摘要:在对多智能体的编队控制上,当输入和系统状态受到约束时,模型预测控制算法比传统的输入输出反馈线性化控制算法具有显著的优势,但传统的模型预测控制算法需要在线优化控制,从而导致巨大的在线负担.为减小这种在线负担,提出一种双模式模型预测控制算法.该算法使用模型预测控制器对控制变量进行在线优化,使得未来某时刻的系统状态进入终端约束集内;此时将系统状态作为输入输出反馈线性化控制器的输入,将系统状态驱动到稳定值;在目标函数中加入避碰函数来有效避免邻近多智能体间的碰撞.仿真结果表明,当输入和状态受到约束时,双模式模型预测控制算法在对多智能体编队控制上比仅使用输入输出反馈线性化控制算法具有明显的优势.
关键词:
多智能体; 编队控制; 双模式; 模型预测控制; 反馈; 避碰
中图分类号: TP242 文献标志码: A
3结束语
当设定领航智能体的初速度vi<0时,基于输入输出反馈线性化控制器的多智能体跟随控制的偏差较大,很难实现一些编队控制.使用模型预测控制可改善多智能体跟随控制的精度,有效实现编队控制.双模式模型预测控制算法在结合输入输出反馈线性化控制器后,能有效降低模型预测控制在线优化的计算量,有利于实现大型多智能体编队系统的实时控制.
参考文献:
[1]HERNANSANZ A, CASALS A, AMAT J. A multirobot cooperation strategy for dexterous task oriented teleoperation[J]. Robotics and Autonomous Systems, 2015, 68: 156172. DOI: 10.1016/j.robot.2014.12.007.
[2]谭民, 王硕. 机器人技术研究进展[J]. 自动化学报, 2013, 39(7): 963972. DOI: 10.3724/SP.J.1004.2013.00963.
[3]ANDRES A P, RICHARD H M, OLIVER M. Cyclic interconnection for formation control of 1D vehicle strings[J]. European Journal of Control, 2016, 27(1): 3644. DOI: 10.1016/j.ejcon.2015.12.002.
[4]ANAND A, NITHYA M, SUDARSHAN T. Coordination of mobile robots with masterslave architecture for a service application[C]// Cycle Pure Agarbathies. Proceedings of 2014 International Conference on Contemporary Computing and Informatics. Mysuru, India: IEEE, 2015: 539543. DOI: 10.1109/IC3I.2014.7019647.
[5]XU J. Fault tolerant finitetime leaderfollower formation control for autonomous surface vessels with LOS range and angle constraints[J]. Automatica, 2016, 68(1): 228236. DOI: 10.1016/j.automatica.2016.01.064.
[6]DESAI J, OSTROWSKI J P, KUMAR V. Controlling formations of multiple mobile robots[C]// Robotics and Automation. Leuven: IEEE, 1998: 28642869.
[7]QIN J, ZHENG W, GAO H. Coordination of multiple agents with doubleintegrator dynamics under generalized interaction topologies[J]. IEEE Transactions on Systems Man and Cybernetics Part B Cybernetics, 2012, 42(1): 4457. DOI: 10.1109/TSMCB.2011.2164523.
[8]LU X, LU R, CHEN S, et al. Finitetime distributed tracking control for multiagent systems with a virtual
leader[J]. IEEE Transactions on Circuits and Systems, 2013, 60(2): 352362. DOI:10.1109/TCSI.2012.2215786.
[9]DUNBAR W B, MURRAY R M. Model predictive control of coordinated multivehicle formations[C]// IEEE Control Systems Society. IEEE Conference on Decision and Control. Las Vegas: IEEE, 2002: 46314636. DOI: 10.1109/CDC.2002.1185108.