窦楚翘 ![](/uploads/202205/10/b4353df50eee0f05a5183cc0e498abb62539.jpg) ![](/uploads/202205/10/4afe38f2edf6e6327ff5d20fe9a61d262539.jpg) ![](/uploads/202205/10/6c3ee5321068e51e2ba865e78b1ba0a02540.jpg) 复习建议 解决集合问题时,首先要明确集合元素的意义,弄清集合由哪些元素组成,需要对集合的文字语言、符号语言、图形语言进行相互转化.其次,由于集合知识概念多、符号多,所以要注意集合的特性,空集的特殊性,符号的表示的特殊性.三是注意知识间的内在联系,注意集合思想与函数思想的联系,集合与不等式、解析几何、三角函数等知识的联系. 1. 集合中的元素的三个特征,特别是无序性和互异性在解题时经常用到.解题后要进行检验,要重视符号语言与文字语言之间的相互转化. 2. 对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号能否取到. 3. 对离散的数集间的运算,或抽象集合间的运算,可借助Venn图.这是数形结合思想的又一体现. 4. 写出一个命题的逆命题、否命题及逆否命题的关键是分清原命题的条件和结论,然后按定义来写;在判断原命题、逆命题、否命题以及逆否命题的真假时,要借助原命题与其逆否命题同真或同假,逆命题与否命题同真或同假来判定. |