标题 | 牧式教学:让学生与数学深度遇见 |
范文 | 郁敏华 【摘要】在牧式教学场域中,教师是一个“牧者”,学生是一个“受牧者”,教学就是“牧式引领”。牧式教学以“学生”为中心,引導学生在“做”中学,关注学生的学习体验。在牧式教学中,教师要搭建“脚手架”、构建“思维链”、创建“对话流”。“牧式教学”指向学生数学生命的成长。 【关键词】小学数学 牧式教学 深度遇见 “牧式”之“牧”,意为“放牧”,重在给牧群一个充分自由的时空,让牧群能在自然状态下自行活动、选择,让牧群能各取所需。在小学数学教学中,倡导“牧式教学”,就是要求教师要创建一个自主、开放的学习场域,在这个场域中,教师是一个“牧者”,要发挥“导”“放”“创”的引领作用;学生是一个“受牧者”,要主动地“觅食”“咀嚼”“回味”“消化”;教学就是“牧式引领”。“牧式教学”指向学生数学生命的成长。 一、预见:“牧式教学”的内涵及功能 “牧式教学”之“牧”,是行动的“放牧”——自然、自主、自由,也是心灵的“放牧”——悦纳、陶醉、生长。“牧式教学”倡导以体验为核心,重视与学生的生活、经验世界相连接,注重亲身实践体悟,促进学生自主发展。从情境层面看,牧式教学讲求吸引;从学生层面看,牧式教学贴合生长;从教师层面看,牧式教学拥有情怀。可以预见,牧式教学对学生的数学认知、数学生命成长具有十分重要的意义和价值。 1.牧式教学:以“学生”为中心 美国人本主义心理学家罗杰斯将学习分为“意义学习”和“无意义学习”。无意义学习是一种效率低下的机械性的学习,而意义学习则是一种牵涉学生已有知识经验、并指向学生未来发展的学习。意义学习的动力来源于学生内部,并融合渗透于学生的整个学习过程之中。在牧式教学中,教师要让学生成为一个意义学习的个体。比如教学“圆柱的体积”时,教师不必过度预设,而应让学生充分发挥主观能动性。如此,学生既可以根据长方体、正方体体积公式进行类比,也可以根据圆的面积公式进行类推。以学生为中心、基于学生立场,能让学生成为一个有意义的学习个体。 2.牧式教学:在“做”中学 罗杰斯认为,绝大多数的有意义学习是从“做”中学的。牧式教学,致力于让学生获得直接的感受、体验。作为牧者,不仅要引导学生完成纸笔练习,更要引导学生观察、操作、思维、想象等。要让学生在“做”中学、在“做”中思、在“做”中玩,从而形成一种具身认知。对于数学中的许多“规定性知识”,教师不能“一点而过”,而应当让学生探寻“规定性知识”背后的“风景”。比如“复式统计表”的教学,许多教师往往直接出示,让学生进行解读。尽管这样,学生也能学会解读统计表信息,但却没有深刻认识单式统计表以及复式统计表的差别。为此,笔者在教学中出示多个单式统计表,激发学生合并意识,引导学生操作合并,从而深刻认识到“斜线表头”的意义。 3.牧式教学:关注学习“体验” 牧式教学,以“体验”为基础,让学生在体验基础上展开数学学习,扩充学生自我的数学认知结构。作为牧者,要改变传统的数学讲解、示范等教学方式,转而根据每个学生不同的学习特征,设计个性化体验方案,让学生在做和学的过程中不断丰盈体验,从而在体验中建立与已有认知、未来现实发展的关联。比如教学“圆锥的体积” 时,通常都是直接出示等底等高的圆柱、圆锥,然后让圆锥灌满沙子或水再倒入圆柱中。在这个过程中,学生尽管操作了,但却没有获得切身体验。因为他们不理解“为什么要选择等底等高的圆柱做实验”。笔者在教学中,充分发挥学生的潜质,赋予学生独立的探索空间。有学生直接将圆锥性容器装满水倒入量杯;有学生将圆锥浸入盛满水的量杯中,测量溢出的水的体积;有学生将圆锥形橡皮泥捏成长方体;还有学生选择等底等高的圆锥和圆柱进行比较,等等。在实验方式的比较中,学生感受、体验到用等底等高的圆柱、圆锥进行实验的科学性。这样的牧式学习,不仅让学生“知其然”,更让学生“知其所以然”。 二、遇见:“牧式教学”的实践与方略 牧式教学,脑中有“标”、心中有“数”、目中有“人”、手中有“法”。牧式教学,要有助于培育学生数学素养。为此,教学内容要由“知识”转向“能力”,教学方式要由“独白”转向“对话”,教学策略要由“灌输”转向“启发”。通过搭建“脚手架”,构建“思维链”,形成“对话流”,进而催生学生“牧式探究”,引导学生“牧式合作”,实现学生 “牧式展示”。 1.搭建“脚手架”,变“学跟教走”为“教为学服务” 在牧式教学中,教师通常用“牧学单”引导学生进行自主探究,揭示学生“怎样学”的过程、方法,变“学跟着教走”为“教为学服务”。从某种意义上说,“牧学单”就是学生学习的“脚手架”,它包括学习目标、学习内容、学习程序等。在牧式教学中,教师首先要设计牧学单,然后将牧学单发给学生,让学生展开自主学习。通过牧学单,学生逐渐学会了自主学习。 比如“圆的认识”这一部分内容,知识点繁杂,历来许多特级教师用这一课“小试牛刀”。笔者在牧式教学中,梳理相关本体性知识,形成了如下的牧学单:①认识圆的特征,如圆心、半径、直径等;②探究圆的特征,并用自己的方式思考或验证圆为什么具有这样的特征。这两个任务,赋予了学生充分进行自主探究的时空,学生在自主学习中进行思考、探究、验证等。借助牧学单,学生不仅认识到圆的本质,还深刻地理解了圆的半径、直径等概念的内涵,并逐步养成了自主搜寻、发现新知的习惯。 作为学生牧学的脚手架,牧学单需要灵活运用。牧学单可以分为预习性牧学单、探究性牧学单和复习整理性牧学单。要真正成为一个“牧者”,就必须放手让学生去探究,探究不仅包括数学学习的重点、难点等内容,还包括学生数学学习的疑点等内容。在这个过程中,学生不是盲目地跟着教师走,而是带着问题和思考主动地探究。 2.构建“思维链”,变“单向传输”为“多向激活” 思维是学生智力的核心,学生数学学习水平的差异通常是由思维能力所决定的。好的思维方法常常能让学生的数学学习事半功倍。在牧式教学中,教师要构建“思维链”,变“单向传输”为“多向激活”。为此,教师要启迪学生思考,探寻问题解决的思路;要引导学生相互对话、研讨,让学生从知识层深入理解层,不断提升学习力,发展数学核心素养。 比如在教学“多边形的内角和”时,教师不应引导学生直接运用转化思想,将多边形分割成若干个三角形,而应在学生经历量角法、撕角法失败的基础上自主探寻。当学生经历了“山重水复疑无路”后,才能真正抵达“柳暗花明又一村”的境界。在分割的过程中,教师也不应对学生过度指点,而应让学生进行牧式合作。通过牧式交流,比较各种分割方法的优劣,并且明晰每一种分割方法之间的关联点。如此,逐步引导学生把握问题解决的关键,形成问题解决的共识,即“多边形内角和应当转化成若干个三角形的内角和”。从“三角形的内角和”到“多边形的内角和”,从“分割法”“测量法”到“轉化法”,从“多点转化”到“一点转化”,思维链催生学生比较、归纳,形成这样的数学感悟:从一个顶点出发将多边形分割成三角形最为方便。 构建“思维链”,就是要多向激活学生的思维,抓住学生探学的疑点、找准学生探学的盲点、展示学生探学的亮点,让学生在质疑、批判、辨析、联想、发散等思辨过程中发展自我,提升自我,从而对问题产生敏感性。牧式教学不是致力于数学知识点的积累,而是着力于引导学生方法的积累、思维品质的培养。 3. 创建“对话流”,变“简单重复”为“探究提升” 在牧式教学中,传统的教师独白渐渐让渡于师生、生生的平等对话。作为牧者,要创建“对话流”,变“简单重复”为“探究提升”。在牧式对话中,师生、生生之间的已有知识经验、思维经验等是最为重要、最为丰富的动态性的教学资源,也是师生、生生对话的支点。牧式教学,要让学生在对话中获得经验的分享。 比如在教学“圆柱的侧面积”时,当学生沿着高将圆柱的侧面剪开、展成长方形之后,笔者引导学生反思、追问:为什么要沿着高剪开呢?一定要沿着高剪开吗?由此,师生、生生间展开平等对话,催生学生牧式表达。有学生认为,一定要沿着高剪开,只有这样,圆柱的侧面才能展开成长方形;有学生持反对意见,认为不一定要沿着高剪开,斜着剪开也可以,那样就能将圆柱的侧面转化成平行四边形;还有学生认为,无论怎样剪都可以,都可以将圆柱侧面这样一个曲面转化成平面,但如果两边不规则,还要将不规则的平面图形转化成规则的平面图形。在平等的对话中,学生对数学知识的认知逐渐走向睿智、深刻。 从学习内容出发,通过教师的牧式引领,催生学生的自由对话。这种对话,让学生原有认知结构遭遇拷问、审视,从而不断地接受挑战,在解构与重构中不断完善。在牧式教学中,对话不仅是学生的认知方式,也是学生的交往方式、活动方式。牧式教学让数学教学呈现出新样态,让学生在自然、自由和自我学习中自我成长! 【参考文献】 [1]刘玉新.茶馆式教学与牧羊式教学商榷[J].中小学教师培训,2005 (5) . [2]伍新春, 管琳.合作学习与课堂教学 [M].北京:人民教育出版社, 2010. |
随便看 |
|
科学优质学术资源、百科知识分享平台,免费提供知识科普、生活经验分享、中外学术论文、各类范文、学术文献、教学资料、学术期刊、会议、报纸、杂志、工具书等各类资源检索、在线阅读和软件app下载服务。