小平邦彦:数学上无捷经可走

    吴健

    日本数学家小平邦彦认为,在数学学习中无捷径可走,小平邦颜的主要学习思想不外乎两点:一是熟记和多练(熟记公式,多做笔记和反复练习),二是培养对数学的感觉和理解.这两点其实是手段和目的的关系,反复练习正是为了达到领悟的结果和培养对数学的感觉、理解,用中国的一句成语来说,就是熟能生巧.

    他认为,数学学习就是先认可已规定的公理、定义、法则等,然后反复证明、练习,在不知不觉中达到对知识的理解.他提到,比如对三分之二除以五分之四,为什么用五分之四去除时可以將分子与分母交换变成乘四分之五呢,这就需要说明它的理由.但他学习算术时就没有这种说明,只学习了相应的规则,即用分数去除时可以将分子与分母交换后去乘。后来,在反复的练习中不知不觉地明白了它的意思,

    为了理解数学定理,一般是一步步循着证明的思路走,但如果对于证明不明白怎么办?他认为,可以把不明白的证明抄写在笔记本上背出来,背诵中不知不觉就明白了,至少会感觉懂了.他认为,将不明白的证明在笔记本上反复抄写,加以背诵,不失为学习数学的一种有效方法.从这个角度上来说,数学学习是没有捷径可走的。

相关文章!
  • 深析提问原则 再现课堂之美

    李晓霞语言是课堂的灵魂所在,而教师的提问语言又是课堂语言的生命线所在.它不仅能非常明确的传递教师所要达成的目的和意图,还能通过

  • 质谱法测定水中溶解氙的含量及

    李军杰+刘汉彬 张佳+韩娟+金贵善+张建锋<br />
    <br />
    <br />
    <br />
    摘要 利用设计的一套水样中提取并分离Xe的装置,与稀有气体质谱

  • 把脉中考:哪些函数问题最易失

    房延华汪春梅中考试题中有关函数的许多题目,求解的思路不难,但解题时,学生往往由于审题不清、考虑不周而错解.为帮助老师们在复习阶段