纸基微孔阵列芯片比色法检测乳酸脱氢酶
张慧妍 张珍吉 邢虎 何治柯
摘要利用纸基微芯片便捷、直观的优势,采用吩嗪二甲酯硫酸盐(PMS)/氯化硝基四氮唑蓝(NBT)显色体系,借助凝胶成像仪和普通照相机两种成像方式,建立了纸基微孔阵列芯片比色法检测乳酸脱氢酶(LDH)的方法。在最佳实验条件下,显色强度与LDH浓度呈线性相关。采用凝胶成像仪检测时,线性范围为10~150 U/L,检出限(3σ)为9.44 U/L(n=18)。采用照相法获得的线性范围为15~150 U/L,检出限(3σ)为12.36 U/L(n=18)。实验表明,人血清白蛋白(HSA)对显色结果具有增强作用,探讨了HSA的增色作用,并以HSA为增强试剂得到工作曲线。基于纸基微孔阵列芯片的LDH活性测定方法具有操作简单、结果直观可见、灵敏度高等优点,对于脱氢酶类的便捷检测有一定参考价值,可望在生物医疗检测领域获得应用。
关键词乳酸脱氢酶; 人血清白蛋白; 纸基微孔阵列芯片; 比色法
1引言
纸基微流控芯片是一种以纸张为基质的新型微流控分析器件,利用特定材料在纸上构建疏水栅栏\[1~4\],将液体流限制在亲水区域,实现流体的复杂调控及分析检测等功能。纸基微芯片试样和试剂消耗少、分析速度快,操作简单,某些情况下可替代玻璃以及高聚物芯片进行现场分析检测\[5~9\]。纸基微芯片以纸为基质,不仅生物相容性好\[10,11\],可与多种检测方法兼容\[12,13\],而且价格低廉, 用完即可丢弃,因此,纸基微芯片已成为一种备受关注的廉价检测技术平台\[14\]。
乳酸脱氢酶(LDH)是临床酶学中经常测定的指标,作为一种工具酶,LDH水平可作为有关器官正常与否的特异性生化指标,因此,血清中LDH活性的测定在疾病诊断中具有重要的临床意义。常用的LDH活性测定方法有化学发光法\[15\]、生物发光法\[16\]、微热量测量法\[17\]、荧光分析法\[18\]、毛细管电泳法\[19\]等,但通常由于部分检测仪器价格较高,或是缺乏熟练的操作人员,使得一些检测技术在偏远或贫困地区难以使用。纸基微芯片致力于为民众提供廉价、便捷的检测平台,减少复杂仪器、装置的使用\[20\]。显色法可以提供直观可见的结果,不需专业分析人员就可以依照标准品对检测结果做出判断,使偏远、贫困或者资源匮乏地区的个人诊断成为可能\[21~23\]。本研究基于纸基微孔阵列芯片显色法检测LDH,采用凝胶成像仪和普通照相机两种方法记录结果,为LDH的灵敏检测提供了一种快速、直观、便捷的分析手段。
2实验部分
2.1仪器与试剂
G17光刻机(成都鑫南光机械设备有限公司),KW4H350烤胶机(上海凯美特功能陶瓷技术有限公司),PB10酸度计(北京赛多利斯仪器系统有限公司),HZQF160立式全温振荡培养箱(上海一恒科学仪器有限公司),MilliQ Advantage A10超纯水系统(美国Millipore公司),凝胶成像系统(CHEMIDOC XRS,美国BIORAD公司),佳能Power Shot G1 X相机,1号定性滤纸(Whatman公司)。
乳酸脱氢酶(LDH,Sigma公司);吩嗪二甲酯硫酸盐(PMS)、氯化硝基四氮唑蓝(NBT)、氧化型辅酶Ⅰ(NAD+)、乳酸锂(上海楷洋生物技术有限公司);人血清白蛋白(HSA,Biosharp公司);木瓜蛋白酶(昆明杰辉生物技术有限公司);牛血清白蛋白(BSA,Roche文瀚科技公司);胰岛素(Sigma公司);胰蛋白酶和溶菌酶(Amresco公司);葡萄糖(国药集团化学试剂有限公司);SU8 2010(MicroChem Corp)。实验用水为超纯水(18.2 MΩ·cm,25 ℃)。[TS(][HT5”SS]图1LDH 的检测原理
Fig.1Principle of lactate dehydrogenase (LDH) detection[HT5][TS)]
2.2LDH检测原理及纸芯片检测方法
2.2.1检测原理如图1所示,实验利用H+转移进行显色,乳酸锂在LDH的催化脱氢作用下转化为丙酮酸,NAD+作为转递电子的辅酶,接受脱下的氢生NADH。生成的 NADH使氧化型PMS变成还原型,还原型PMS与NBT反应生成蓝紫色甲臜,颜色的深浅与LDH的活性成正比,从而可根据颜色实现LDH的分析检测。
2.2.2纸基微孔阵列芯片检测方法采用光刻胶法\[24\]在滤纸上制作微孔阵列纸芯片,方法流程如图2所示,微孔直径2.5 mm,此时每孔最佳加入量2.5 μL。首先分别配制实验用显色储备液,置于4 ℃保存。实验时将2.5 μL显色液预先滴加于微孔中,然后放于培养箱中37 ℃烘干(约10 min),最后加入LDH标准溶液,置于暗箱中避光条件下进行显色反应,[TS(][HT5”SS]图2纸基微孔阵列芯片制作示意图
Fig.2Schematic diagram of the fabrication of paperbased microwell arrays microfluidic device[HT5][TS)]采用凝胶成像仪和普通照相机成像,并读取显色强度(灰度值),进行比色检测。
在条件优化过程中,采用3 × 10的微孔阵列,前5列加对应的显色液做空白对照,以减少芯片间差异(纸芯片制作过程引起)对实验结果的影响,使实验结果更加可靠。
3结果与讨论
3.1缓冲溶液pH值对LDH活性测定的影响
酶的活性容易受其环境pH值的影响,因此选择合适的pH值尤为重要。选用不同pH值的TrisHCl缓冲液配制显色液和标准溶液,考察pH值对LDH活性的影响。结果表明,当缓冲溶液的pH值从7.5增加到9.0时,显色强度逐渐增强;当pH>9.0时, 由于高pH值改变了酶的构象,降低了酶的活性,显色强度逐渐降低(图3)。因此,该体系最佳反应pH值为9.0。
3.2NAD+及乳酸锂浓度对LDH活性测定的影响
在各类乳酸盐中,乳酸锂纯度高、稳定性好,因而选用乳酸锂作为反应底物。乳酸根离子在LDH的催化脱氢作用下转化为丙酮酸,NAD+作为转递电子的辅酶,接受脱下的氢生成NADH。因此乳酸盐和NAD+的浓度会影响LDH活性测定。结果表明,当NAD+浓度为12 mmol/L时显色强度达到最大值, 随着NAD+浓度继续增加,显色强度逐渐降低。当乳酸盐浓度逐渐增大到35 mmol/L时,显色强度达到最大值;随着乳酸盐浓度继续增大,显色减弱。实验结果符合酶促反应理论,反应存在最佳浓度,当底物浓度过高时会对反应产生抑制\[25\]。在后续实验中,选用条件为35 mmol/L乳酸盐、12 mmol/L NAD+。
3.3显色底物浓度对LDH活性测定的影响
本方法中LDH发生脱氢作用后,受氢体PMS接受乳酸盐脱下的氢原子而被还原,选用NBT为还原指示剂,反应生成蓝紫色的甲臜。实验浓度范围的PMS溶液本身呈紫红色,NBT溶液呈淡黄色,从而会使显色液呈现一定底色。通过控制单一变量,考察了PMS、NBT浓度对显色强度的影响,采用含不同浓度PMS、NBT的显色液,同时在同一张芯片上进行了空白对照。实验结果如图4所示,当PMS浓度为60 μmol/L, NBT浓度180 μmol/L, 可使显色强度的相对值最大。
3.4反应时间对LDH活性测定的影响
在一定温度下,酶促反应通常需要一定的时间才可以反应完全;同时纸芯片上反应过程中,溶液不断蒸发也对显色强度有一定影响。在同一张纸芯片上考察了显色时间(5~70 min)对显色强度的影响。结果表明,在50 min时显色强度达到最大值。[TS(][HT5”SS]图5LDH检测的选择性3.5方法的选择性及线性范围考察
采用7种物质(胰岛素、溶菌酶、HSA、木瓜蛋白酶、葡萄糖、胰蛋白酶、BSA)进行选择性验证,显色结果如图5所示。LDH的显色强度远高于其它物质,可见此体系对LDH具有很好的选择性。
3.6HSA对乳酸脱氢酶检测的影响
血清是由多种物质组成的复杂混合物,其中含有大量蛋白质(含量为80~120 g/L),因此,在对实际样品进行检测之前,需考察HSA(人血清白蛋白)对检测体系的影响。实验考察了不同浓度HSA对LDH检测的影响。当HSA浓度为86 mg/L时,对LDH检测具有微弱的增强作用。基于此,在含有86 mg/L HSA的条件下进行测定,凝胶成像法所得线性范围为10~180 U/L,回归方程为Y=1.53X+41.97, R2=0.992,检出限(3σ)为7.29 U/L(n=18)。照相法所得线性范围为10~200 U/L,回归方程为Y=0.18X+3.25,R2=0.993,检出限(3σ)为3.61 U/L(n=18)。可见HSA不仅不会对LDH测定产生影响,还可改善检测灵敏度、降低检出限。
3.7HSA增强作用的探讨
借助于紫外可见光谱法对HSA的显色增强作用进行了探讨。在一定浓度的反应液中加入不同量的HSA后,紫外可见光谱峰位置不变,但吸收值明显增强(图6A),结果与纸芯片上的显色结果相吻合。借助紫外可见光谱法分别考察HSA与显色反应的反应物PMS和NBT的相互作用,结果表明,HSA对PMS和NBT的吸收光谱几乎无影响。随后,考察了HSA对显色反应产物的相互作用,利用GSH(谷胱甘肽)还原NBT,再加入不同量的HSA,结果如图6B所示,HSA对NBT显色反应产物的紫外可见吸收光谱具有增强作用。因此,初步推断HSA的增敏作用主要是由于HSA对显色反应还原产物的作用。
4结论
纸基微芯片作为一种廉价的检测平台,在疾病临床指标检测中具有重要的应用价值。利用PMS/NBT显色法在纸基微孔阵列芯片上对乳酸脱氢酶进行了定量检测,优化了反应条件,采用凝胶成像法和照相法同时记录了检测结果,方法简便、结果直观、灵敏度高,充分发挥了纸基微芯片显色检测的优势。本方法与通用脱氢酶测定思路一致,可为部分脱氢酶类物质的简便直观检测提供借鉴。在乳酸脱氢酶的检测中还发现HSA对显色结果具有增强作用,探讨了HSA增敏作用的原因,对于实际样品检测具有参考价值。
References
1Abe K, Suzuki K, Citterio D. Anal. Chem., 2008, 80(18): 6928-6934
2Bruzewicz D A, Reches M, Whitesides G M. Anal. Chem., 2008, 80(9): 3387-3392
3Li X, Tian J F, Nguyen T, Shen W. Anal. Chem., 2008, 80(23): 9131-9134
4Carrilho E, Martinez A W, Whitesides G M. Anal. Chem., 2009, 81(16): 7091-7095
5Martinez A W, Phillips S T, Whitesides G M, Carrilho E. Anal. Chem., 2010, 82(1): 3-10
6Li X, Tian J, Shen W. Cellulose, 2010, 17(3): 649-659
7Wang S M, Ge L, Song X R, Yan M, Ge S G, Yu J H, Zeng F. Analyst, 2012, 137(16): 3821-3827
8Schilling K M, Lepore A L, Kurian J A, Martinez A W. Anal. Chem., 2012, 84(3): 1579-1585
9Ge L, Wang S M, Song X R, Ge S G, Yu J H. Lab Chip, 2012, 12(17): 3150-3158
10Zhao W A, van den Berg A. Lab Chip, 2008, 8(12): 1988-1991
11Martinez A W, Phillips S T, Butte M J, Whitesides G M. Angew. Chem. Int. Edit., 2007, 46(8): 1318-1320
12Wang S M, Ge L, Song X R, Yu J H, Ge S G, Huang J D, Zeng F. Biosens. Bioelectron., 2012, 31(1): 212-218
13Delaney J L, Hogan C F, Tian J F, Shen W. Anal. Chem., 2011, 83(4): 1300-1306
14 Chen X, Chen J, Wang F B, Xiang X, Luo M, Ji X H, He Z K. Biosens. Bioelectron., 2012, 35(1): 363-368
15Williams D C, Seitz W R. Anal. Chem., 1976, 48(11): 1478-1481
16Gautier S M, Blum L J, Coulet P R. Anal. Chim. Acta, 1992, 266(2): 331-338
17Rehak N N, Everse J, Kaplan N O, Berger R L. Anal. Biochem., 1976, 70(2): 381-386
18Brooks L, Olken H G. Clin. Chem., 1965, 11(8): 748-762
19YANG WenChu, YU AiMin, CHEN HongYuan. Chem. J. Chinese Universities, 2009, 22(4): 547-551
杨文初, 俞爱民, 陈洪渊. 高等学校化学学报, 2001, 22(4): 547-551
20Ellerbee A K, Phillips S T, Siegel A C, Mirica K A, Martinez A W, Striehl P, Jain N, Prentiss M, Whitesides G M. Anal. Chem., 2009, 81(20): 8447-8452
21Martinez A W, Phillips S T, Carrilho E, Thomas S W, Sindi H, Whitesides G M. Anal. Chem., 2008, 80(10): 3699-3707
22Gubala V, Harris L F, Ricco A J, Tan M X, Williams D E. Anal. Chem., 2012, 84(2): 487-515
23Carrilho E, Phillips S T, Vella S J, Martinez A W, Whitesides G M. Anal. Chem., 2009, 81(15): 5990-5998
24WANG FangFang, CHEN Jin, HE ZhiKe. J. Anal. Sci., 2011, 27(2): 137-141
王方方, 陈 锦, 何治柯. 分析科学学报, 2011, 27(2): 137-141
25Lienhard G E. Science, 1973, 180(4082): 149-154
AbstractA lowcost, simple, sensitive detection method of lactate dehydrogense (LDH) was developed on paperbased microwell arrays microfluidic device. The phenazine methyl sulfate/nitrotetrazolium blue chloride (PMS/NBT) detection system was used for LDH detection and the colorimetric results were recorded by both Gel Documentation System and a common camera. Under the optimized conditions, the colorimetric intensity showed a linear correlation to the activity of LDH in the range of 10 to 150 U/L with a limit of detection (LOD) of 9.44 U/L (3σ) by Gel Documentation System; and the linear range was 15-150 U/L by camera with a LOD of 12.36 U/L (3σ). Foremost, it was found that human serum albumin (HSA) had an effect on the colorimetric enhancement in this detection system. This lowcost, portable paperbased analytical platform could be suitable for the application in the pointofcare with high sensitivity and reproducibility.
KeywordsLactate dehydrogenase; Human serum albumin; Paperbased microwell arrays microfluidic device; Colorimetric method
(Received 11 April 2014; accepted 13 June 2014)
This work was supported by the National Natural Science Foundation of China (No. 21205089) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120141120036)
9Ge L, Wang S M, Song X R, Ge S G, Yu J H. Lab Chip, 2012, 12(17): 3150-3158
10Zhao W A, van den Berg A. Lab Chip, 2008, 8(12): 1988-1991
11Martinez A W, Phillips S T, Butte M J, Whitesides G M. Angew. Chem. Int. Edit., 2007, 46(8): 1318-1320
12Wang S M, Ge L, Song X R, Yu J H, Ge S G, Huang J D, Zeng F. Biosens. Bioelectron., 2012, 31(1): 212-218
13Delaney J L, Hogan C F, Tian J F, Shen W. Anal. Chem., 2011, 83(4): 1300-1306
14 Chen X, Chen J, Wang F B, Xiang X, Luo M, Ji X H, He Z K. Biosens. Bioelectron., 2012, 35(1): 363-368
15Williams D C, Seitz W R. Anal. Chem., 1976, 48(11): 1478-1481
16Gautier S M, Blum L J, Coulet P R. Anal. Chim. Acta, 1992, 266(2): 331-338
17Rehak N N, Everse J, Kaplan N O, Berger R L. Anal. Biochem., 1976, 70(2): 381-386
18Brooks L, Olken H G. Clin. Chem., 1965, 11(8): 748-762
19YANG WenChu, YU AiMin, CHEN HongYuan. Chem. J. Chinese Universities, 2009, 22(4): 547-551
杨文初, 俞爱民, 陈洪渊. 高等学校化学学报, 2001, 22(4): 547-551
20Ellerbee A K, Phillips S T, Siegel A C, Mirica K A, Martinez A W, Striehl P, Jain N, Prentiss M, Whitesides G M. Anal. Chem., 2009, 81(20): 8447-8452
21Martinez A W, Phillips S T, Carrilho E, Thomas S W, Sindi H, Whitesides G M. Anal. Chem., 2008, 80(10): 3699-3707
22Gubala V, Harris L F, Ricco A J, Tan M X, Williams D E. Anal. Chem., 2012, 84(2): 487-515
23Carrilho E, Phillips S T, Vella S J, Martinez A W, Whitesides G M. Anal. Chem., 2009, 81(15): 5990-5998
24WANG FangFang, CHEN Jin, HE ZhiKe. J. Anal. Sci., 2011, 27(2): 137-141
王方方, 陈 锦, 何治柯. 分析科学学报, 2011, 27(2): 137-141
25Lienhard G E. Science, 1973, 180(4082): 149-154
AbstractA lowcost, simple, sensitive detection method of lactate dehydrogense (LDH) was developed on paperbased microwell arrays microfluidic device. The phenazine methyl sulfate/nitrotetrazolium blue chloride (PMS/NBT) detection system was used for LDH detection and the colorimetric results were recorded by both Gel Documentation System and a common camera. Under the optimized conditions, the colorimetric intensity showed a linear correlation to the activity of LDH in the range of 10 to 150 U/L with a limit of detection (LOD) of 9.44 U/L (3σ) by Gel Documentation System; and the linear range was 15-150 U/L by camera with a LOD of 12.36 U/L (3σ). Foremost, it was found that human serum albumin (HSA) had an effect on the colorimetric enhancement in this detection system. This lowcost, portable paperbased analytical platform could be suitable for the application in the pointofcare with high sensitivity and reproducibility.
KeywordsLactate dehydrogenase; Human serum albumin; Paperbased microwell arrays microfluidic device; Colorimetric method
(Received 11 April 2014; accepted 13 June 2014)
This work was supported by the National Natural Science Foundation of China (No. 21205089) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120141120036)
9Ge L, Wang S M, Song X R, Ge S G, Yu J H. Lab Chip, 2012, 12(17): 3150-3158
10Zhao W A, van den Berg A. Lab Chip, 2008, 8(12): 1988-1991
11Martinez A W, Phillips S T, Butte M J, Whitesides G M. Angew. Chem. Int. Edit., 2007, 46(8): 1318-1320
12Wang S M, Ge L, Song X R, Yu J H, Ge S G, Huang J D, Zeng F. Biosens. Bioelectron., 2012, 31(1): 212-218
13Delaney J L, Hogan C F, Tian J F, Shen W. Anal. Chem., 2011, 83(4): 1300-1306
14 Chen X, Chen J, Wang F B, Xiang X, Luo M, Ji X H, He Z K. Biosens. Bioelectron., 2012, 35(1): 363-368
15Williams D C, Seitz W R. Anal. Chem., 1976, 48(11): 1478-1481
16Gautier S M, Blum L J, Coulet P R. Anal. Chim. Acta, 1992, 266(2): 331-338
17Rehak N N, Everse J, Kaplan N O, Berger R L. Anal. Biochem., 1976, 70(2): 381-386
18Brooks L, Olken H G. Clin. Chem., 1965, 11(8): 748-762
19YANG WenChu, YU AiMin, CHEN HongYuan. Chem. J. Chinese Universities, 2009, 22(4): 547-551
杨文初, 俞爱民, 陈洪渊. 高等学校化学学报, 2001, 22(4): 547-551
20Ellerbee A K, Phillips S T, Siegel A C, Mirica K A, Martinez A W, Striehl P, Jain N, Prentiss M, Whitesides G M. Anal. Chem., 2009, 81(20): 8447-8452
21Martinez A W, Phillips S T, Carrilho E, Thomas S W, Sindi H, Whitesides G M. Anal. Chem., 2008, 80(10): 3699-3707
22Gubala V, Harris L F, Ricco A J, Tan M X, Williams D E. Anal. Chem., 2012, 84(2): 487-515
23Carrilho E, Phillips S T, Vella S J, Martinez A W, Whitesides G M. Anal. Chem., 2009, 81(15): 5990-5998
24WANG FangFang, CHEN Jin, HE ZhiKe. J. Anal. Sci., 2011, 27(2): 137-141
王方方, 陈 锦, 何治柯. 分析科学学报, 2011, 27(2): 137-141
25Lienhard G E. Science, 1973, 180(4082): 149-154
AbstractA lowcost, simple, sensitive detection method of lactate dehydrogense (LDH) was developed on paperbased microwell arrays microfluidic device. The phenazine methyl sulfate/nitrotetrazolium blue chloride (PMS/NBT) detection system was used for LDH detection and the colorimetric results were recorded by both Gel Documentation System and a common camera. Under the optimized conditions, the colorimetric intensity showed a linear correlation to the activity of LDH in the range of 10 to 150 U/L with a limit of detection (LOD) of 9.44 U/L (3σ) by Gel Documentation System; and the linear range was 15-150 U/L by camera with a LOD of 12.36 U/L (3σ). Foremost, it was found that human serum albumin (HSA) had an effect on the colorimetric enhancement in this detection system. This lowcost, portable paperbased analytical platform could be suitable for the application in the pointofcare with high sensitivity and reproducibility.
KeywordsLactate dehydrogenase; Human serum albumin; Paperbased microwell arrays microfluidic device; Colorimetric method
(Received 11 April 2014; accepted 13 June 2014)
This work was supported by the National Natural Science Foundation of China (No. 21205089) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120141120036)
摘要利用纸基微芯片便捷、直观的优势,采用吩嗪二甲酯硫酸盐(PMS)/氯化硝基四氮唑蓝(NBT)显色体系,借助凝胶成像仪和普通照相机两种成像方式,建立了纸基微孔阵列芯片比色法检测乳酸脱氢酶(LDH)的方法。在最佳实验条件下,显色强度与LDH浓度呈线性相关。采用凝胶成像仪检测时,线性范围为10~150 U/L,检出限(3σ)为9.44 U/L(n=18)。采用照相法获得的线性范围为15~150 U/L,检出限(3σ)为12.36 U/L(n=18)。实验表明,人血清白蛋白(HSA)对显色结果具有增强作用,探讨了HSA的增色作用,并以HSA为增强试剂得到工作曲线。基于纸基微孔阵列芯片的LDH活性测定方法具有操作简单、结果直观可见、灵敏度高等优点,对于脱氢酶类的便捷检测有一定参考价值,可望在生物医疗检测领域获得应用。
关键词乳酸脱氢酶; 人血清白蛋白; 纸基微孔阵列芯片; 比色法
1引言
纸基微流控芯片是一种以纸张为基质的新型微流控分析器件,利用特定材料在纸上构建疏水栅栏\[1~4\],将液体流限制在亲水区域,实现流体的复杂调控及分析检测等功能。纸基微芯片试样和试剂消耗少、分析速度快,操作简单,某些情况下可替代玻璃以及高聚物芯片进行现场分析检测\[5~9\]。纸基微芯片以纸为基质,不仅生物相容性好\[10,11\],可与多种检测方法兼容\[12,13\],而且价格低廉, 用完即可丢弃,因此,纸基微芯片已成为一种备受关注的廉价检测技术平台\[14\]。
乳酸脱氢酶(LDH)是临床酶学中经常测定的指标,作为一种工具酶,LDH水平可作为有关器官正常与否的特异性生化指标,因此,血清中LDH活性的测定在疾病诊断中具有重要的临床意义。常用的LDH活性测定方法有化学发光法\[15\]、生物发光法\[16\]、微热量测量法\[17\]、荧光分析法\[18\]、毛细管电泳法\[19\]等,但通常由于部分检测仪器价格较高,或是缺乏熟练的操作人员,使得一些检测技术在偏远或贫困地区难以使用。纸基微芯片致力于为民众提供廉价、便捷的检测平台,减少复杂仪器、装置的使用\[20\]。显色法可以提供直观可见的结果,不需专业分析人员就可以依照标准品对检测结果做出判断,使偏远、贫困或者资源匮乏地区的个人诊断成为可能\[21~23\]。本研究基于纸基微孔阵列芯片显色法检测LDH,采用凝胶成像仪和普通照相机两种方法记录结果,为LDH的灵敏检测提供了一种快速、直观、便捷的分析手段。
2实验部分
2.1仪器与试剂
G17光刻机(成都鑫南光机械设备有限公司),KW4H350烤胶机(上海凯美特功能陶瓷技术有限公司),PB10酸度计(北京赛多利斯仪器系统有限公司),HZQF160立式全温振荡培养箱(上海一恒科学仪器有限公司),MilliQ Advantage A10超纯水系统(美国Millipore公司),凝胶成像系统(CHEMIDOC XRS,美国BIORAD公司),佳能Power Shot G1 X相机,1号定性滤纸(Whatman公司)。
乳酸脱氢酶(LDH,Sigma公司);吩嗪二甲酯硫酸盐(PMS)、氯化硝基四氮唑蓝(NBT)、氧化型辅酶Ⅰ(NAD+)、乳酸锂(上海楷洋生物技术有限公司);人血清白蛋白(HSA,Biosharp公司);木瓜蛋白酶(昆明杰辉生物技术有限公司);牛血清白蛋白(BSA,Roche文瀚科技公司);胰岛素(Sigma公司);胰蛋白酶和溶菌酶(Amresco公司);葡萄糖(国药集团化学试剂有限公司);SU8 2010(MicroChem Corp)。实验用水为超纯水(18.2 MΩ·cm,25 ℃)。[TS(][HT5”SS]图1LDH 的检测原理
Fig.1Principle of lactate dehydrogenase (LDH) detection[HT5][TS)]
2.2LDH检测原理及纸芯片检测方法
2.2.1检测原理如图1所示,实验利用H+转移进行显色,乳酸锂在LDH的催化脱氢作用下转化为丙酮酸,NAD+作为转递电子的辅酶,接受脱下的氢生NADH。生成的 NADH使氧化型PMS变成还原型,还原型PMS与NBT反应生成蓝紫色甲臜,颜色的深浅与LDH的活性成正比,从而可根据颜色实现LDH的分析检测。
2.2.2纸基微孔阵列芯片检测方法采用光刻胶法\[24\]在滤纸上制作微孔阵列纸芯片,方法流程如图2所示,微孔直径2.5 mm,此时每孔最佳加入量2.5 μL。首先分别配制实验用显色储备液,置于4 ℃保存。实验时将2.5 μL显色液预先滴加于微孔中,然后放于培养箱中37 ℃烘干(约10 min),最后加入LDH标准溶液,置于暗箱中避光条件下进行显色反应,[TS(][HT5”SS]图2纸基微孔阵列芯片制作示意图
Fig.2Schematic diagram of the fabrication of paperbased microwell arrays microfluidic device[HT5][TS)]采用凝胶成像仪和普通照相机成像,并读取显色强度(灰度值),进行比色检测。
在条件优化过程中,采用3 × 10的微孔阵列,前5列加对应的显色液做空白对照,以减少芯片间差异(纸芯片制作过程引起)对实验结果的影响,使实验结果更加可靠。
3结果与讨论
3.1缓冲溶液pH值对LDH活性测定的影响
酶的活性容易受其环境pH值的影响,因此选择合适的pH值尤为重要。选用不同pH值的TrisHCl缓冲液配制显色液和标准溶液,考察pH值对LDH活性的影响。结果表明,当缓冲溶液的pH值从7.5增加到9.0时,显色强度逐渐增强;当pH>9.0时, 由于高pH值改变了酶的构象,降低了酶的活性,显色强度逐渐降低(图3)。因此,该体系最佳反应pH值为9.0。
3.2NAD+及乳酸锂浓度对LDH活性测定的影响
在各类乳酸盐中,乳酸锂纯度高、稳定性好,因而选用乳酸锂作为反应底物。乳酸根离子在LDH的催化脱氢作用下转化为丙酮酸,NAD+作为转递电子的辅酶,接受脱下的氢生成NADH。因此乳酸盐和NAD+的浓度会影响LDH活性测定。结果表明,当NAD+浓度为12 mmol/L时显色强度达到最大值, 随着NAD+浓度继续增加,显色强度逐渐降低。当乳酸盐浓度逐渐增大到35 mmol/L时,显色强度达到最大值;随着乳酸盐浓度继续增大,显色减弱。实验结果符合酶促反应理论,反应存在最佳浓度,当底物浓度过高时会对反应产生抑制\[25\]。在后续实验中,选用条件为35 mmol/L乳酸盐、12 mmol/L NAD+。
3.3显色底物浓度对LDH活性测定的影响
本方法中LDH发生脱氢作用后,受氢体PMS接受乳酸盐脱下的氢原子而被还原,选用NBT为还原指示剂,反应生成蓝紫色的甲臜。实验浓度范围的PMS溶液本身呈紫红色,NBT溶液呈淡黄色,从而会使显色液呈现一定底色。通过控制单一变量,考察了PMS、NBT浓度对显色强度的影响,采用含不同浓度PMS、NBT的显色液,同时在同一张芯片上进行了空白对照。实验结果如图4所示,当PMS浓度为60 μmol/L, NBT浓度180 μmol/L, 可使显色强度的相对值最大。
3.4反应时间对LDH活性测定的影响
在一定温度下,酶促反应通常需要一定的时间才可以反应完全;同时纸芯片上反应过程中,溶液不断蒸发也对显色强度有一定影响。在同一张纸芯片上考察了显色时间(5~70 min)对显色强度的影响。结果表明,在50 min时显色强度达到最大值。[TS(][HT5”SS]图5LDH检测的选择性3.5方法的选择性及线性范围考察
采用7种物质(胰岛素、溶菌酶、HSA、木瓜蛋白酶、葡萄糖、胰蛋白酶、BSA)进行选择性验证,显色结果如图5所示。LDH的显色强度远高于其它物质,可见此体系对LDH具有很好的选择性。
3.6HSA对乳酸脱氢酶检测的影响
血清是由多种物质组成的复杂混合物,其中含有大量蛋白质(含量为80~120 g/L),因此,在对实际样品进行检测之前,需考察HSA(人血清白蛋白)对检测体系的影响。实验考察了不同浓度HSA对LDH检测的影响。当HSA浓度为86 mg/L时,对LDH检测具有微弱的增强作用。基于此,在含有86 mg/L HSA的条件下进行测定,凝胶成像法所得线性范围为10~180 U/L,回归方程为Y=1.53X+41.97, R2=0.992,检出限(3σ)为7.29 U/L(n=18)。照相法所得线性范围为10~200 U/L,回归方程为Y=0.18X+3.25,R2=0.993,检出限(3σ)为3.61 U/L(n=18)。可见HSA不仅不会对LDH测定产生影响,还可改善检测灵敏度、降低检出限。
3.7HSA增强作用的探讨
借助于紫外可见光谱法对HSA的显色增强作用进行了探讨。在一定浓度的反应液中加入不同量的HSA后,紫外可见光谱峰位置不变,但吸收值明显增强(图6A),结果与纸芯片上的显色结果相吻合。借助紫外可见光谱法分别考察HSA与显色反应的反应物PMS和NBT的相互作用,结果表明,HSA对PMS和NBT的吸收光谱几乎无影响。随后,考察了HSA对显色反应产物的相互作用,利用GSH(谷胱甘肽)还原NBT,再加入不同量的HSA,结果如图6B所示,HSA对NBT显色反应产物的紫外可见吸收光谱具有增强作用。因此,初步推断HSA的增敏作用主要是由于HSA对显色反应还原产物的作用。
4结论
纸基微芯片作为一种廉价的检测平台,在疾病临床指标检测中具有重要的应用价值。利用PMS/NBT显色法在纸基微孔阵列芯片上对乳酸脱氢酶进行了定量检测,优化了反应条件,采用凝胶成像法和照相法同时记录了检测结果,方法简便、结果直观、灵敏度高,充分发挥了纸基微芯片显色检测的优势。本方法与通用脱氢酶测定思路一致,可为部分脱氢酶类物质的简便直观检测提供借鉴。在乳酸脱氢酶的检测中还发现HSA对显色结果具有增强作用,探讨了HSA增敏作用的原因,对于实际样品检测具有参考价值。
References
1Abe K, Suzuki K, Citterio D. Anal. Chem., 2008, 80(18): 6928-6934
2Bruzewicz D A, Reches M, Whitesides G M. Anal. Chem., 2008, 80(9): 3387-3392
3Li X, Tian J F, Nguyen T, Shen W. Anal. Chem., 2008, 80(23): 9131-9134
4Carrilho E, Martinez A W, Whitesides G M. Anal. Chem., 2009, 81(16): 7091-7095
5Martinez A W, Phillips S T, Whitesides G M, Carrilho E. Anal. Chem., 2010, 82(1): 3-10
6Li X, Tian J, Shen W. Cellulose, 2010, 17(3): 649-659
7Wang S M, Ge L, Song X R, Yan M, Ge S G, Yu J H, Zeng F. Analyst, 2012, 137(16): 3821-3827
8Schilling K M, Lepore A L, Kurian J A, Martinez A W. Anal. Chem., 2012, 84(3): 1579-1585
9Ge L, Wang S M, Song X R, Ge S G, Yu J H. Lab Chip, 2012, 12(17): 3150-3158
10Zhao W A, van den Berg A. Lab Chip, 2008, 8(12): 1988-1991
11Martinez A W, Phillips S T, Butte M J, Whitesides G M. Angew. Chem. Int. Edit., 2007, 46(8): 1318-1320
12Wang S M, Ge L, Song X R, Yu J H, Ge S G, Huang J D, Zeng F. Biosens. Bioelectron., 2012, 31(1): 212-218
13Delaney J L, Hogan C F, Tian J F, Shen W. Anal. Chem., 2011, 83(4): 1300-1306
14 Chen X, Chen J, Wang F B, Xiang X, Luo M, Ji X H, He Z K. Biosens. Bioelectron., 2012, 35(1): 363-368
15Williams D C, Seitz W R. Anal. Chem., 1976, 48(11): 1478-1481
16Gautier S M, Blum L J, Coulet P R. Anal. Chim. Acta, 1992, 266(2): 331-338
17Rehak N N, Everse J, Kaplan N O, Berger R L. Anal. Biochem., 1976, 70(2): 381-386
18Brooks L, Olken H G. Clin. Chem., 1965, 11(8): 748-762
19YANG WenChu, YU AiMin, CHEN HongYuan. Chem. J. Chinese Universities, 2009, 22(4): 547-551
杨文初, 俞爱民, 陈洪渊. 高等学校化学学报, 2001, 22(4): 547-551
20Ellerbee A K, Phillips S T, Siegel A C, Mirica K A, Martinez A W, Striehl P, Jain N, Prentiss M, Whitesides G M. Anal. Chem., 2009, 81(20): 8447-8452
21Martinez A W, Phillips S T, Carrilho E, Thomas S W, Sindi H, Whitesides G M. Anal. Chem., 2008, 80(10): 3699-3707
22Gubala V, Harris L F, Ricco A J, Tan M X, Williams D E. Anal. Chem., 2012, 84(2): 487-515
23Carrilho E, Phillips S T, Vella S J, Martinez A W, Whitesides G M. Anal. Chem., 2009, 81(15): 5990-5998
24WANG FangFang, CHEN Jin, HE ZhiKe. J. Anal. Sci., 2011, 27(2): 137-141
王方方, 陈 锦, 何治柯. 分析科学学报, 2011, 27(2): 137-141
25Lienhard G E. Science, 1973, 180(4082): 149-154
AbstractA lowcost, simple, sensitive detection method of lactate dehydrogense (LDH) was developed on paperbased microwell arrays microfluidic device. The phenazine methyl sulfate/nitrotetrazolium blue chloride (PMS/NBT) detection system was used for LDH detection and the colorimetric results were recorded by both Gel Documentation System and a common camera. Under the optimized conditions, the colorimetric intensity showed a linear correlation to the activity of LDH in the range of 10 to 150 U/L with a limit of detection (LOD) of 9.44 U/L (3σ) by Gel Documentation System; and the linear range was 15-150 U/L by camera with a LOD of 12.36 U/L (3σ). Foremost, it was found that human serum albumin (HSA) had an effect on the colorimetric enhancement in this detection system. This lowcost, portable paperbased analytical platform could be suitable for the application in the pointofcare with high sensitivity and reproducibility.
KeywordsLactate dehydrogenase; Human serum albumin; Paperbased microwell arrays microfluidic device; Colorimetric method
(Received 11 April 2014; accepted 13 June 2014)
This work was supported by the National Natural Science Foundation of China (No. 21205089) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120141120036)
9Ge L, Wang S M, Song X R, Ge S G, Yu J H. Lab Chip, 2012, 12(17): 3150-3158
10Zhao W A, van den Berg A. Lab Chip, 2008, 8(12): 1988-1991
11Martinez A W, Phillips S T, Butte M J, Whitesides G M. Angew. Chem. Int. Edit., 2007, 46(8): 1318-1320
12Wang S M, Ge L, Song X R, Yu J H, Ge S G, Huang J D, Zeng F. Biosens. Bioelectron., 2012, 31(1): 212-218
13Delaney J L, Hogan C F, Tian J F, Shen W. Anal. Chem., 2011, 83(4): 1300-1306
14 Chen X, Chen J, Wang F B, Xiang X, Luo M, Ji X H, He Z K. Biosens. Bioelectron., 2012, 35(1): 363-368
15Williams D C, Seitz W R. Anal. Chem., 1976, 48(11): 1478-1481
16Gautier S M, Blum L J, Coulet P R. Anal. Chim. Acta, 1992, 266(2): 331-338
17Rehak N N, Everse J, Kaplan N O, Berger R L. Anal. Biochem., 1976, 70(2): 381-386
18Brooks L, Olken H G. Clin. Chem., 1965, 11(8): 748-762
19YANG WenChu, YU AiMin, CHEN HongYuan. Chem. J. Chinese Universities, 2009, 22(4): 547-551
杨文初, 俞爱民, 陈洪渊. 高等学校化学学报, 2001, 22(4): 547-551
20Ellerbee A K, Phillips S T, Siegel A C, Mirica K A, Martinez A W, Striehl P, Jain N, Prentiss M, Whitesides G M. Anal. Chem., 2009, 81(20): 8447-8452
21Martinez A W, Phillips S T, Carrilho E, Thomas S W, Sindi H, Whitesides G M. Anal. Chem., 2008, 80(10): 3699-3707
22Gubala V, Harris L F, Ricco A J, Tan M X, Williams D E. Anal. Chem., 2012, 84(2): 487-515
23Carrilho E, Phillips S T, Vella S J, Martinez A W, Whitesides G M. Anal. Chem., 2009, 81(15): 5990-5998
24WANG FangFang, CHEN Jin, HE ZhiKe. J. Anal. Sci., 2011, 27(2): 137-141
王方方, 陈 锦, 何治柯. 分析科学学报, 2011, 27(2): 137-141
25Lienhard G E. Science, 1973, 180(4082): 149-154
AbstractA lowcost, simple, sensitive detection method of lactate dehydrogense (LDH) was developed on paperbased microwell arrays microfluidic device. The phenazine methyl sulfate/nitrotetrazolium blue chloride (PMS/NBT) detection system was used for LDH detection and the colorimetric results were recorded by both Gel Documentation System and a common camera. Under the optimized conditions, the colorimetric intensity showed a linear correlation to the activity of LDH in the range of 10 to 150 U/L with a limit of detection (LOD) of 9.44 U/L (3σ) by Gel Documentation System; and the linear range was 15-150 U/L by camera with a LOD of 12.36 U/L (3σ). Foremost, it was found that human serum albumin (HSA) had an effect on the colorimetric enhancement in this detection system. This lowcost, portable paperbased analytical platform could be suitable for the application in the pointofcare with high sensitivity and reproducibility.
KeywordsLactate dehydrogenase; Human serum albumin; Paperbased microwell arrays microfluidic device; Colorimetric method
(Received 11 April 2014; accepted 13 June 2014)
This work was supported by the National Natural Science Foundation of China (No. 21205089) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120141120036)
9Ge L, Wang S M, Song X R, Ge S G, Yu J H. Lab Chip, 2012, 12(17): 3150-3158
10Zhao W A, van den Berg A. Lab Chip, 2008, 8(12): 1988-1991
11Martinez A W, Phillips S T, Butte M J, Whitesides G M. Angew. Chem. Int. Edit., 2007, 46(8): 1318-1320
12Wang S M, Ge L, Song X R, Yu J H, Ge S G, Huang J D, Zeng F. Biosens. Bioelectron., 2012, 31(1): 212-218
13Delaney J L, Hogan C F, Tian J F, Shen W. Anal. Chem., 2011, 83(4): 1300-1306
14 Chen X, Chen J, Wang F B, Xiang X, Luo M, Ji X H, He Z K. Biosens. Bioelectron., 2012, 35(1): 363-368
15Williams D C, Seitz W R. Anal. Chem., 1976, 48(11): 1478-1481
16Gautier S M, Blum L J, Coulet P R. Anal. Chim. Acta, 1992, 266(2): 331-338
17Rehak N N, Everse J, Kaplan N O, Berger R L. Anal. Biochem., 1976, 70(2): 381-386
18Brooks L, Olken H G. Clin. Chem., 1965, 11(8): 748-762
19YANG WenChu, YU AiMin, CHEN HongYuan. Chem. J. Chinese Universities, 2009, 22(4): 547-551
杨文初, 俞爱民, 陈洪渊. 高等学校化学学报, 2001, 22(4): 547-551
20Ellerbee A K, Phillips S T, Siegel A C, Mirica K A, Martinez A W, Striehl P, Jain N, Prentiss M, Whitesides G M. Anal. Chem., 2009, 81(20): 8447-8452
21Martinez A W, Phillips S T, Carrilho E, Thomas S W, Sindi H, Whitesides G M. Anal. Chem., 2008, 80(10): 3699-3707
22Gubala V, Harris L F, Ricco A J, Tan M X, Williams D E. Anal. Chem., 2012, 84(2): 487-515
23Carrilho E, Phillips S T, Vella S J, Martinez A W, Whitesides G M. Anal. Chem., 2009, 81(15): 5990-5998
24WANG FangFang, CHEN Jin, HE ZhiKe. J. Anal. Sci., 2011, 27(2): 137-141
王方方, 陈 锦, 何治柯. 分析科学学报, 2011, 27(2): 137-141
25Lienhard G E. Science, 1973, 180(4082): 149-154
AbstractA lowcost, simple, sensitive detection method of lactate dehydrogense (LDH) was developed on paperbased microwell arrays microfluidic device. The phenazine methyl sulfate/nitrotetrazolium blue chloride (PMS/NBT) detection system was used for LDH detection and the colorimetric results were recorded by both Gel Documentation System and a common camera. Under the optimized conditions, the colorimetric intensity showed a linear correlation to the activity of LDH in the range of 10 to 150 U/L with a limit of detection (LOD) of 9.44 U/L (3σ) by Gel Documentation System; and the linear range was 15-150 U/L by camera with a LOD of 12.36 U/L (3σ). Foremost, it was found that human serum albumin (HSA) had an effect on the colorimetric enhancement in this detection system. This lowcost, portable paperbased analytical platform could be suitable for the application in the pointofcare with high sensitivity and reproducibility.
KeywordsLactate dehydrogenase; Human serum albumin; Paperbased microwell arrays microfluidic device; Colorimetric method
(Received 11 April 2014; accepted 13 June 2014)
This work was supported by the National Natural Science Foundation of China (No. 21205089) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120141120036)