加速溶剂萃取同位素质谱分析土壤水的氢氧同位素
朱庆增等
摘要土壤水是水循环的重要组成部分,其氢氧同位素组成在生态学、环境学、水文学等领域有着广泛应用。不同的提取水方法存在较大偏差,因此本研究建立了加速溶剂萃取(ASE)提取同位素质谱(IRMS)分析土壤水中氢氧同位素的方法。ASE提取土壤水的条件是:萃取溶剂二氯甲烷,萃取温度100 ℃,萃取压力10.3 MPa, 静态萃取时间10 min,重复提取3次,循环次数分别为4, 4和3次,合并提取土壤水并经活性炭固相萃取柱(SPE)净化后,利用同位素比质谱分析土壤水的氢氧同位素组成。与过注水相比,提取土壤水的δD增加2.12‰~4.58‰,δ18O增加
Symbolm@@ 0.17‰~0.93‰,氢氧同位素的分析精度分别为0.89‰和0.37‰。
关键词土壤水;氢同位素;氧同位素;加速溶剂萃取
1引言
土壤水是水循环重要的组成部分,其氢氧同位素组成在环境学\[1\]、地球科学\[2~4\]、水文学\[5,6\]、植物生理学\[7~9\]等领域有着广泛的应用。提取土壤水的方法主要有真空蒸馏法、共沸蒸馏法、离心分离法和氦气吹扫等\[1,8~22\]。
水的氢氧同位素差值分别为+2.0‰~+3.2‰和+0.35~+0.77‰。离心分离法\[14,17\]是利用有机溶剂置换和高速离心分离土壤水,对于含水量高于10%的样品,提取水与加入水的氢同位素差值为0~+3‰\[14\]。Ignatev等\[19\]运用恒温加热氦气吹扫液氮收集的方法提取土壤水,δD和δ18O的精度分别为0.7‰和0.08‰。 Walker等\[13\]对比了14个实验室利用不同提取方法提取土壤水进行同位素分析的结果,氢同位素和氧同位素的最大偏差分别为30‰和3.4‰。可见在土壤水氢氧同位素研究中,特别是低含水量样品中,不同的提取方法对土壤水氢氧同位素影响较大,存在较大偏差。
加速溶剂萃取(ASE)是一种在高温(≤200 ℃)、高压(≤20 MPa)条件下快速提取固体或半固体样品中有机质的前处理方法\[23\],主要用于提取氯化杀虫剂、除草剂、多氯联苯、石油烃类等环境中的有机物\[23~25\],但利用该技术提取土壤中水尚未见报道。本研究建立了ASE提取SPE净化IRMS分析土壤水的氢氧稳定同位素的方法,可简单有效地对土壤,特别是对低含水量的土壤提取水和氢氧同位素分析。
2实验部分
2.1仪器与试剂
MAT253气体稳定同位素比质谱仪和Flash EA HT 1112元素分析仪通过Conflo Ⅲ连接组成同位素分析单元 (美国 Therm公司); ASE350加速溶剂萃取仪(美国 Dionex公司); KQ500PB数控超声清洗仪(舒美公司); LXJⅡB型低速大容量离心机(上海安亭公司); SPE萃取装置(Supelco公司); CNW活性炭SPE柱(100 mg/1 mL); 二氯甲烷(色谱级,Fisher公司); 实验用水为去离子水。
Symbolm@@ 6.00‰。与100 ℃条件下相比,80 ℃条件下土壤水的提取率低20%,土壤水的氢同位素均值偏负8‰,氧同位素值均值偏负1‰。原因可能是ASE提取土壤水过程中优先提取质量较轻同位素,提取不完全可能导致同位素值偏负,因此选择100 ℃作为提取温度。3.2.2萃取次数在萃取压力、静态萃取时间、萃取温度等参数不变时,只改变提取次数,探究提取次数对提取土壤水(含水量为9.1%)δD和δ18O值的影响。当样品提取1次,循环次数为4时,土壤水提取率均值为24%。样品连续提取两次,循环次数均为4次时,提取率均值为45%。样品连续提取3次,循环次数分别是4,4和3次时,提取率均值为57%。提取次数越多,回收率越高; 氢氧同位素富集倍数也提高,说明质量较轻的同位素优先提取,而含重同位素的水后被提取(图2)。经过优化后ASE提取土壤水的条件为:萃取温度100 ℃,萃取压力10.3 MPa,静态萃取时间10 min,样品重复提取3次,循环次数分别为4,4和3次。
3.3ASE提取法对不同含水量样品的提取蒸馏法等提取低含水量样品的土壤水时精确度和准确度会降低,原因可能是土壤与水混合过程中,水与土壤基质和矿物之间发生相互作用,低含水量样品中这部分水所占比例偏高,同位素分馏明显\[9,13,18,21\]。实验中利用ASE提取了水含量分别为9.1%,6.3%和4.8%的土壤水,精确度和准确度较好,说明该方法可以作为一种较理想方法提取低含水量土壤中的水\[20,21\]。
3.4ASE提取法和超声离心分离法的比较
超声离心分离法(USE)提取含水量为9.1%的土壤样品时,提取1 g水需要约57 g土壤样品,ASE提取法需要约18 g土壤样品,即超声离心分离法所需样品量是ASE提取法的3倍。超声离心分离法和ASE提取法提取土壤水的同位素相比于δDspe和δ18Ospe值都明显富集,ASE提取法得到的水的δDase和δ18Oase分别增加约3.6‰和0.36‰,超声离心分离法的氢氧同位素分别增加约1‰和0.49‰(见图4),原因可能是弱束缚水、土壤有机质、矿物类型以及土壤基质的影响\[12,13\]。比较超声离心分离法和ASE提取法提取更低含水量土壤水的效果,发现超声离心分离无法从含水量为6.3%和4.8%的土壤中提取出足够的水用于同位素分析,而ASE提取法可以提取足够量的水,并且同位素分析结果较好,说明ASE提取法提取低含水量的土壤有更好效果。
3.5方法精密度和准确度
应用ASE提取法对含水量为9.1%的7个土壤样品进行提取、SPE净化和氢氧同位素分析
大量研究表明,水分蒸发过程会发生显著的氢氧同位素分馏,轻同位素将优先蒸发,残留水分的δD值和δ18O值因蒸发强度的增加而增加。在树木覆盖和无植被覆盖情况下,后者土壤水的蒸发量明显大于前者,造成后者的δD值和δ18O值也明显高于前者。
4结论
本研究建立了ASE提取SPE净化IRMS分析土壤水中氢氧同位素的方法。ASE提取土壤水的条件是萃取温度100 ℃、萃取压力10 MPa、静态萃取时间10 min,连续提取3次,循环次数分别为4, 4和3次, 将提取水合并后,利用活性炭SPE柱净化除去有机物,IRMS分析土壤水的氢氧同位素。提取含水量为9.1%的样品时,δD和δ18O的标准偏差分别为0.89‰和0.37‰,提取水与过柱水的氢氧同位素差值分别为2.12‰~4.58‰和
References
1Koeniger P, Leibundgut C, Link T, Marshall J D. Org. Geochem., 2010, 41(1): 31-40
2Luo P, Peng P, Gleixner G, Zheng Z, Pang Z, Ding Z. Earth Planet. Sc. Lett., 2011, 301(1): 285-296
3Jia G, Wei K, Chen F, Peng P A. Geochim. Cosmochim. Ac., 2008, 72(21): 5165-5174
4Liu W, Yang H. Global Change Biol., 2008, 14(9): 2166-2177
5Gat J R. Annu. Rev. Earth Pl. Sc., 1996, 24(1): 225-262
6MA XueNing, ZHANG MingJun, LI YaJu, MA Qian, LI XiaoFei. Soils, 2012, 44(4): 554-561
马雪宁, 张明军, 李亚举, 马 潜, 李小飞. 土壤, 2012, 44(4): 554-561
7Sternberg L D S L. Nature, 1988, 333(6168): 59-61
8LIU WenRu, SHEN YeJie, PENG XinHua, CHEN XiaoMin. Chinese Journal of Ecology., 2012, 31(7): 1870-1875
刘文茹, 沈业杰, 彭新华, 陈效民. 生态学杂志, 2012, 31(7): 1870-1875
9Koeniger P, Marshall J D, Link T, Mulch A. Rapid Commun. Mass Spectrosm., 2011, 25(20): 3041-3048
10West A G, Goldsmith G R, Brooks P D, Dawson T E. Rapid Commun. Mass Spectrosm, 2010, 24(14): 1948-1954
11ZHANG CongZhi, ZHANG JiaBao ZHANG Hui, WANG Yan. Journal of Irriagation and Drainage., 2008, 27(4): 10-13
张丛志, 张佳宝, 张 辉, 王 艳. 灌溉排水学报, 2008, 27(4): 10-13
12AraguásAraguás L, Rozanski K, Gonfiantini R, Louvat D. J. Hydrol., 1995, 168(1): 159-171
13Walker G R, Woods P H, Allison G B. Chem. Geol., 1994, 111(1): 297-306
14Leaney F W, Smettem K, Chittleborough D J. J. Hydrol., 1993, 147(1): 83-103
15Revesz K, Woods P H. J. Hydrol, 1990, 115(1): 397-406
16Shatkay M, Magaritz M. Geochim. Cosmochim. Ac., 1987, 51(5): 1135-1141
17Mubarak A, Olsen R A. Soil Sci. Soc. Am. J., 1976: 40
18Ingraham N L, Shadel C. J. Hydrol., 1992, 140(1): 371-387
19Ignatev A, Velivetckaia T, Sugimoto A, Ueta A. J. Hydrol., 2013, 498: 265-273
20Koehler G, Wassenaar L I, Hendry M J. Anal. Chem., 2000, 72(22): 5659-5664
21Mcconville C, Kalin R M, Flood D. Rapid Commun. Mass Spectrosm., 1999, 13: 1339-1345
22Scrimgeour C M. J. Hydrol., 1995, 172(1): 261-274
23Golet E M, Strehler A, Alder A C, Giger W. Anal. Chem., 2002, 74(21): 5455-5462
24GiergielewiczMozajska H, Dabrowski L, Namiesnik J. Crit. Rev. Anal. Chem., 2001, 31(3): 149-165
25ZHANG Pu, LIU WeiGuo. Rock and Mineral Analysis, 2010, 29(3): 201-206
张 普, 刘卫国. 岩矿测试, 2010, 29(3): 201-206
26Dreybrodt W, Scholz D. Geochim. Cosmochim. Ac., 2011, 75(3): 734-752
27Hsieh J C, Chadwick O A, Kelly E F, Savin S M. Geoderma., 1998, 82(1): 269-293
AbstractSoil water is one of the most important components in hydrological cycle. The stable hydrogen and oxygen isotopes in soil water have been increasingly used in the ecological, environment and hydrological research. In view of different techniques for extracting soil water, there is significant difference in the δD and δ18O composition. This paper presents a method for analyzing hydrogen and oxygen isotopes in soil water by using elemental analyzer and isotope ratio mass spectrometry with accelerated solvent extraction for sample pretreatment. The conditions are: extraction solvent: dichloromethane, temperature: 100 ℃, pressure of 10.3 MPa, static time: 10 min. The samples were extracted three times, and with cycle values of four, four and three, respectively. Comparing with the added water, the deuterium and oxygen isotope values in the extracted soil water enrich 2.12‰-4.58‰ and 0.17‰-0.93‰, respectively. The reproducibility of replicate extractions of soil water is around ±0.89‰ for δD and ±0.37‰ for δ18O.
KeywordsSoil water; Hydrogen isotope; Oxygen isotope; Accelerated solvent extraction
25ZHANG Pu, LIU WeiGuo. Rock and Mineral Analysis, 2010, 29(3): 201-206
张 普, 刘卫国. 岩矿测试, 2010, 29(3): 201-206
26Dreybrodt W, Scholz D. Geochim. Cosmochim. Ac., 2011, 75(3): 734-752
27Hsieh J C, Chadwick O A, Kelly E F, Savin S M. Geoderma., 1998, 82(1): 269-293
AbstractSoil water is one of the most important components in hydrological cycle. The stable hydrogen and oxygen isotopes in soil water have been increasingly used in the ecological, environment and hydrological research. In view of different techniques for extracting soil water, there is significant difference in the δD and δ18O composition. This paper presents a method for analyzing hydrogen and oxygen isotopes in soil water by using elemental analyzer and isotope ratio mass spectrometry with accelerated solvent extraction for sample pretreatment. The conditions are: extraction solvent: dichloromethane, temperature: 100 ℃, pressure of 10.3 MPa, static time: 10 min. The samples were extracted three times, and with cycle values of four, four and three, respectively. Comparing with the added water, the deuterium and oxygen isotope values in the extracted soil water enrich 2.12‰-4.58‰ and 0.17‰-0.93‰, respectively. The reproducibility of replicate extractions of soil water is around ±0.89‰ for δD and ±0.37‰ for δ18O.
KeywordsSoil water; Hydrogen isotope; Oxygen isotope; Accelerated solvent extraction
25ZHANG Pu, LIU WeiGuo. Rock and Mineral Analysis, 2010, 29(3): 201-206
张 普, 刘卫国. 岩矿测试, 2010, 29(3): 201-206
26Dreybrodt W, Scholz D. Geochim. Cosmochim. Ac., 2011, 75(3): 734-752
27Hsieh J C, Chadwick O A, Kelly E F, Savin S M. Geoderma., 1998, 82(1): 269-293
AbstractSoil water is one of the most important components in hydrological cycle. The stable hydrogen and oxygen isotopes in soil water have been increasingly used in the ecological, environment and hydrological research. In view of different techniques for extracting soil water, there is significant difference in the δD and δ18O composition. This paper presents a method for analyzing hydrogen and oxygen isotopes in soil water by using elemental analyzer and isotope ratio mass spectrometry with accelerated solvent extraction for sample pretreatment. The conditions are: extraction solvent: dichloromethane, temperature: 100 ℃, pressure of 10.3 MPa, static time: 10 min. The samples were extracted three times, and with cycle values of four, four and three, respectively. Comparing with the added water, the deuterium and oxygen isotope values in the extracted soil water enrich 2.12‰-4.58‰ and 0.17‰-0.93‰, respectively. The reproducibility of replicate extractions of soil water is around ±0.89‰ for δD and ±0.37‰ for δ18O.
KeywordsSoil water; Hydrogen isotope; Oxygen isotope; Accelerated solvent extraction
摘要土壤水是水循环的重要组成部分,其氢氧同位素组成在生态学、环境学、水文学等领域有着广泛应用。不同的提取水方法存在较大偏差,因此本研究建立了加速溶剂萃取(ASE)提取同位素质谱(IRMS)分析土壤水中氢氧同位素的方法。ASE提取土壤水的条件是:萃取溶剂二氯甲烷,萃取温度100 ℃,萃取压力10.3 MPa, 静态萃取时间10 min,重复提取3次,循环次数分别为4, 4和3次,合并提取土壤水并经活性炭固相萃取柱(SPE)净化后,利用同位素比质谱分析土壤水的氢氧同位素组成。与过注水相比,提取土壤水的δD增加2.12‰~4.58‰,δ18O增加
Symbolm@@ 0.17‰~0.93‰,氢氧同位素的分析精度分别为0.89‰和0.37‰。
关键词土壤水;氢同位素;氧同位素;加速溶剂萃取
1引言
土壤水是水循环重要的组成部分,其氢氧同位素组成在环境学\[1\]、地球科学\[2~4\]、水文学\[5,6\]、植物生理学\[7~9\]等领域有着广泛的应用。提取土壤水的方法主要有真空蒸馏法、共沸蒸馏法、离心分离法和氦气吹扫等\[1,8~22\]。
水的氢氧同位素差值分别为+2.0‰~+3.2‰和+0.35~+0.77‰。离心分离法\[14,17\]是利用有机溶剂置换和高速离心分离土壤水,对于含水量高于10%的样品,提取水与加入水的氢同位素差值为0~+3‰\[14\]。Ignatev等\[19\]运用恒温加热氦气吹扫液氮收集的方法提取土壤水,δD和δ18O的精度分别为0.7‰和0.08‰。 Walker等\[13\]对比了14个实验室利用不同提取方法提取土壤水进行同位素分析的结果,氢同位素和氧同位素的最大偏差分别为30‰和3.4‰。可见在土壤水氢氧同位素研究中,特别是低含水量样品中,不同的提取方法对土壤水氢氧同位素影响较大,存在较大偏差。
加速溶剂萃取(ASE)是一种在高温(≤200 ℃)、高压(≤20 MPa)条件下快速提取固体或半固体样品中有机质的前处理方法\[23\],主要用于提取氯化杀虫剂、除草剂、多氯联苯、石油烃类等环境中的有机物\[23~25\],但利用该技术提取土壤中水尚未见报道。本研究建立了ASE提取SPE净化IRMS分析土壤水的氢氧稳定同位素的方法,可简单有效地对土壤,特别是对低含水量的土壤提取水和氢氧同位素分析。
2实验部分
2.1仪器与试剂
MAT253气体稳定同位素比质谱仪和Flash EA HT 1112元素分析仪通过Conflo Ⅲ连接组成同位素分析单元 (美国 Therm公司); ASE350加速溶剂萃取仪(美国 Dionex公司); KQ500PB数控超声清洗仪(舒美公司); LXJⅡB型低速大容量离心机(上海安亭公司); SPE萃取装置(Supelco公司); CNW活性炭SPE柱(100 mg/1 mL); 二氯甲烷(色谱级,Fisher公司); 实验用水为去离子水。
Symbolm@@ 6.00‰。与100 ℃条件下相比,80 ℃条件下土壤水的提取率低20%,土壤水的氢同位素均值偏负8‰,氧同位素值均值偏负1‰。原因可能是ASE提取土壤水过程中优先提取质量较轻同位素,提取不完全可能导致同位素值偏负,因此选择100 ℃作为提取温度。3.2.2萃取次数在萃取压力、静态萃取时间、萃取温度等参数不变时,只改变提取次数,探究提取次数对提取土壤水(含水量为9.1%)δD和δ18O值的影响。当样品提取1次,循环次数为4时,土壤水提取率均值为24%。样品连续提取两次,循环次数均为4次时,提取率均值为45%。样品连续提取3次,循环次数分别是4,4和3次时,提取率均值为57%。提取次数越多,回收率越高; 氢氧同位素富集倍数也提高,说明质量较轻的同位素优先提取,而含重同位素的水后被提取(图2)。经过优化后ASE提取土壤水的条件为:萃取温度100 ℃,萃取压力10.3 MPa,静态萃取时间10 min,样品重复提取3次,循环次数分别为4,4和3次。
3.3ASE提取法对不同含水量样品的提取蒸馏法等提取低含水量样品的土壤水时精确度和准确度会降低,原因可能是土壤与水混合过程中,水与土壤基质和矿物之间发生相互作用,低含水量样品中这部分水所占比例偏高,同位素分馏明显\[9,13,18,21\]。实验中利用ASE提取了水含量分别为9.1%,6.3%和4.8%的土壤水,精确度和准确度较好,说明该方法可以作为一种较理想方法提取低含水量土壤中的水\[20,21\]。
3.4ASE提取法和超声离心分离法的比较
超声离心分离法(USE)提取含水量为9.1%的土壤样品时,提取1 g水需要约57 g土壤样品,ASE提取法需要约18 g土壤样品,即超声离心分离法所需样品量是ASE提取法的3倍。超声离心分离法和ASE提取法提取土壤水的同位素相比于δDspe和δ18Ospe值都明显富集,ASE提取法得到的水的δDase和δ18Oase分别增加约3.6‰和0.36‰,超声离心分离法的氢氧同位素分别增加约1‰和0.49‰(见图4),原因可能是弱束缚水、土壤有机质、矿物类型以及土壤基质的影响\[12,13\]。比较超声离心分离法和ASE提取法提取更低含水量土壤水的效果,发现超声离心分离无法从含水量为6.3%和4.8%的土壤中提取出足够的水用于同位素分析,而ASE提取法可以提取足够量的水,并且同位素分析结果较好,说明ASE提取法提取低含水量的土壤有更好效果。
3.5方法精密度和准确度
应用ASE提取法对含水量为9.1%的7个土壤样品进行提取、SPE净化和氢氧同位素分析
大量研究表明,水分蒸发过程会发生显著的氢氧同位素分馏,轻同位素将优先蒸发,残留水分的δD值和δ18O值因蒸发强度的增加而增加。在树木覆盖和无植被覆盖情况下,后者土壤水的蒸发量明显大于前者,造成后者的δD值和δ18O值也明显高于前者。
4结论
本研究建立了ASE提取SPE净化IRMS分析土壤水中氢氧同位素的方法。ASE提取土壤水的条件是萃取温度100 ℃、萃取压力10 MPa、静态萃取时间10 min,连续提取3次,循环次数分别为4, 4和3次, 将提取水合并后,利用活性炭SPE柱净化除去有机物,IRMS分析土壤水的氢氧同位素。提取含水量为9.1%的样品时,δD和δ18O的标准偏差分别为0.89‰和0.37‰,提取水与过柱水的氢氧同位素差值分别为2.12‰~4.58‰和
References
1Koeniger P, Leibundgut C, Link T, Marshall J D. Org. Geochem., 2010, 41(1): 31-40
2Luo P, Peng P, Gleixner G, Zheng Z, Pang Z, Ding Z. Earth Planet. Sc. Lett., 2011, 301(1): 285-296
3Jia G, Wei K, Chen F, Peng P A. Geochim. Cosmochim. Ac., 2008, 72(21): 5165-5174
4Liu W, Yang H. Global Change Biol., 2008, 14(9): 2166-2177
5Gat J R. Annu. Rev. Earth Pl. Sc., 1996, 24(1): 225-262
6MA XueNing, ZHANG MingJun, LI YaJu, MA Qian, LI XiaoFei. Soils, 2012, 44(4): 554-561
马雪宁, 张明军, 李亚举, 马 潜, 李小飞. 土壤, 2012, 44(4): 554-561
7Sternberg L D S L. Nature, 1988, 333(6168): 59-61
8LIU WenRu, SHEN YeJie, PENG XinHua, CHEN XiaoMin. Chinese Journal of Ecology., 2012, 31(7): 1870-1875
刘文茹, 沈业杰, 彭新华, 陈效民. 生态学杂志, 2012, 31(7): 1870-1875
9Koeniger P, Marshall J D, Link T, Mulch A. Rapid Commun. Mass Spectrosm., 2011, 25(20): 3041-3048
10West A G, Goldsmith G R, Brooks P D, Dawson T E. Rapid Commun. Mass Spectrosm, 2010, 24(14): 1948-1954
11ZHANG CongZhi, ZHANG JiaBao ZHANG Hui, WANG Yan. Journal of Irriagation and Drainage., 2008, 27(4): 10-13
张丛志, 张佳宝, 张 辉, 王 艳. 灌溉排水学报, 2008, 27(4): 10-13
12AraguásAraguás L, Rozanski K, Gonfiantini R, Louvat D. J. Hydrol., 1995, 168(1): 159-171
13Walker G R, Woods P H, Allison G B. Chem. Geol., 1994, 111(1): 297-306
14Leaney F W, Smettem K, Chittleborough D J. J. Hydrol., 1993, 147(1): 83-103
15Revesz K, Woods P H. J. Hydrol, 1990, 115(1): 397-406
16Shatkay M, Magaritz M. Geochim. Cosmochim. Ac., 1987, 51(5): 1135-1141
17Mubarak A, Olsen R A. Soil Sci. Soc. Am. J., 1976: 40
18Ingraham N L, Shadel C. J. Hydrol., 1992, 140(1): 371-387
19Ignatev A, Velivetckaia T, Sugimoto A, Ueta A. J. Hydrol., 2013, 498: 265-273
20Koehler G, Wassenaar L I, Hendry M J. Anal. Chem., 2000, 72(22): 5659-5664
21Mcconville C, Kalin R M, Flood D. Rapid Commun. Mass Spectrosm., 1999, 13: 1339-1345
22Scrimgeour C M. J. Hydrol., 1995, 172(1): 261-274
23Golet E M, Strehler A, Alder A C, Giger W. Anal. Chem., 2002, 74(21): 5455-5462
24GiergielewiczMozajska H, Dabrowski L, Namiesnik J. Crit. Rev. Anal. Chem., 2001, 31(3): 149-165
25ZHANG Pu, LIU WeiGuo. Rock and Mineral Analysis, 2010, 29(3): 201-206
张 普, 刘卫国. 岩矿测试, 2010, 29(3): 201-206
26Dreybrodt W, Scholz D. Geochim. Cosmochim. Ac., 2011, 75(3): 734-752
27Hsieh J C, Chadwick O A, Kelly E F, Savin S M. Geoderma., 1998, 82(1): 269-293
AbstractSoil water is one of the most important components in hydrological cycle. The stable hydrogen and oxygen isotopes in soil water have been increasingly used in the ecological, environment and hydrological research. In view of different techniques for extracting soil water, there is significant difference in the δD and δ18O composition. This paper presents a method for analyzing hydrogen and oxygen isotopes in soil water by using elemental analyzer and isotope ratio mass spectrometry with accelerated solvent extraction for sample pretreatment. The conditions are: extraction solvent: dichloromethane, temperature: 100 ℃, pressure of 10.3 MPa, static time: 10 min. The samples were extracted three times, and with cycle values of four, four and three, respectively. Comparing with the added water, the deuterium and oxygen isotope values in the extracted soil water enrich 2.12‰-4.58‰ and 0.17‰-0.93‰, respectively. The reproducibility of replicate extractions of soil water is around ±0.89‰ for δD and ±0.37‰ for δ18O.
KeywordsSoil water; Hydrogen isotope; Oxygen isotope; Accelerated solvent extraction
25ZHANG Pu, LIU WeiGuo. Rock and Mineral Analysis, 2010, 29(3): 201-206
张 普, 刘卫国. 岩矿测试, 2010, 29(3): 201-206
26Dreybrodt W, Scholz D. Geochim. Cosmochim. Ac., 2011, 75(3): 734-752
27Hsieh J C, Chadwick O A, Kelly E F, Savin S M. Geoderma., 1998, 82(1): 269-293
AbstractSoil water is one of the most important components in hydrological cycle. The stable hydrogen and oxygen isotopes in soil water have been increasingly used in the ecological, environment and hydrological research. In view of different techniques for extracting soil water, there is significant difference in the δD and δ18O composition. This paper presents a method for analyzing hydrogen and oxygen isotopes in soil water by using elemental analyzer and isotope ratio mass spectrometry with accelerated solvent extraction for sample pretreatment. The conditions are: extraction solvent: dichloromethane, temperature: 100 ℃, pressure of 10.3 MPa, static time: 10 min. The samples were extracted three times, and with cycle values of four, four and three, respectively. Comparing with the added water, the deuterium and oxygen isotope values in the extracted soil water enrich 2.12‰-4.58‰ and 0.17‰-0.93‰, respectively. The reproducibility of replicate extractions of soil water is around ±0.89‰ for δD and ±0.37‰ for δ18O.
KeywordsSoil water; Hydrogen isotope; Oxygen isotope; Accelerated solvent extraction
25ZHANG Pu, LIU WeiGuo. Rock and Mineral Analysis, 2010, 29(3): 201-206
张 普, 刘卫国. 岩矿测试, 2010, 29(3): 201-206
26Dreybrodt W, Scholz D. Geochim. Cosmochim. Ac., 2011, 75(3): 734-752
27Hsieh J C, Chadwick O A, Kelly E F, Savin S M. Geoderma., 1998, 82(1): 269-293
AbstractSoil water is one of the most important components in hydrological cycle. The stable hydrogen and oxygen isotopes in soil water have been increasingly used in the ecological, environment and hydrological research. In view of different techniques for extracting soil water, there is significant difference in the δD and δ18O composition. This paper presents a method for analyzing hydrogen and oxygen isotopes in soil water by using elemental analyzer and isotope ratio mass spectrometry with accelerated solvent extraction for sample pretreatment. The conditions are: extraction solvent: dichloromethane, temperature: 100 ℃, pressure of 10.3 MPa, static time: 10 min. The samples were extracted three times, and with cycle values of four, four and three, respectively. Comparing with the added water, the deuterium and oxygen isotope values in the extracted soil water enrich 2.12‰-4.58‰ and 0.17‰-0.93‰, respectively. The reproducibility of replicate extractions of soil water is around ±0.89‰ for δD and ±0.37‰ for δ18O.
KeywordsSoil water; Hydrogen isotope; Oxygen isotope; Accelerated solvent extraction