基于结构性及各向异性的软黏土变形性状试验
柳艳华+谢永利
基金项目:国家自然科学基金项目(51208055);中国博士后科学基金项目(2012M511960)
摘要:针对结构性和各向异性两大要素对天然软黏土变形性状的影响,对上海天然沉积软黏土进行一维固结试验、K0固结试验以及三轴不排水剪切试验。结果表明:上海天然沉积软黏土具有明显的结构性及各向异性特征;压缩特性在结构屈服破坏前后存在显著差别,具有结构性软黏土所特有的分段特征;不同初始固结应力下的等压及偏压固结不排水应力路径曲线最终都趋近于同一临界状态;在初始有效固结应力低于软黏土的结构屈服应力时,应力应变曲线呈应变软化型,随着初始有效固结应力的增加,当其超过结构屈服应力后,应力应变曲线逐渐呈现硬化型特征;在初始有效固结应力相同且低于结构屈服应力的前提下,偏压固结模式所对应的不排水剪切峰值强度高于等压固结模式,且屈服后的应变软化程度相较于等压固结模式更高;在不排水剪切强度达到峰值后,等压和偏压固结模式下的应力应变曲线逐渐趋于重合;在初始有效固结应力相等的情况下,等压固结模式下产生的孔隙水压力较偏压模式下要高。
关键词:岩土工程;软黏土;固结试验;结构性;各向异性;变形
中图分类号:P642.13;TU41文献标志码:A
Test on Deformation Character of Soft Clay Based on Structure and Anisotropy
LIU Yanhua, XIE Yongli
(School of Highway, Changan University, Xian 710064, Shaanxi, China)
Abstract: In order to find the influence of structure and anisotropy on deformation character of natural soft clay, onedimensional consolidation test, K0 consolidation test and triaxial undrained shear test were carried out for soft clay from natural sedimentation in Shanghai. The results show that the properties of soft clay from natural sedimentation in Shanghai are characterized by structure and anisotropy; the compression properties are significantly different before and after structural yielding, and the compression curve is divided into two parts as structural soft soil; the undrained stress path curves with different initial consolidation stresses finally approach the same critical state under isotropic and anisotropic consolidation modes; when initial effective consolidation stress is lower than structural yielding stress of soft clay, the stressstrain curve is strain softening, and when the initial stress is higher than the yielding stress, the characteristic of
stressstrain curve is gradually hardening with the increase of the initial stress; when the initial stresses are the same, and are lower than the yielding stress, the peak of undrained shear strength under anisotropic consolidation mode is higher than that under isotropic consolidation mode, and the strain softening after yielding is higher than that under isotropic consolidation mode; after the peak of undrained shear strength arrives, the stressstain curves under isotropic and anisotropic consolidation modes approach coincidence; when the initial stresses are the same, the pore water pressure under isotropic consolidation mode is higher than that under anisotropic consolidation mode.
Key words: geotechnical engineering; soft clay; consolidation test; structure; anisotropy; deformation
0引言
关于土结构性研究的重要性,由土力学的奠基人太沙基最早指出,中国沈珠江将其称为“21世纪土力学的核心”[1]。从广义上讲,大部分天然沉积土均具有一定的结构性,而且有些黏土还具有很强的结构性,如日本的有明黏土、瑞典黏土和中国湛江黏土等。作为天然沉积土的一个重要特性,结构性对土的工程性质有着不可忽视的影响[24],它是决定各类土力学性状的一个最为根本的因素[5]。在过去的几十年,关于结构性的研究在岩土工程领域已经引起广泛重视,尤其是对天然沉积软黏土结构性的研究。结构性对软黏土的压缩性、强度特性、渗透性、应力应变关系以及屈服特性均有着重要影响[623]。由于结构性的存在,使得天然沉积软黏土与其相应的重塑土有着截然不同的性质。同时,天然沉积软黏土在沉积和固结过程中形成的固有各向异性以及在后期复杂加载状态下所形成的应力诱发各向异性是天然沉积土的另一个重要特性。国内外诸多学者通过试验证明了各向异性的广泛存在,且对软黏土的强度和应力应变关系有着显著影响[2433]。
对于软黏土而言,在其沉积和固结过程中,结构性和各向异性的形成是互为影响、不可分割的。同时,二者对天然软黏土力学性状的影响也是相互作用、密不可分的。笔者围绕结构性及各向异性两大因素,对上海天然沉积软黏土进行了一系列试验研究,就结构性和各向异性对天然软黏土变形性状的影响进行了探讨。
1试样概况
本次试验的原状软黏土取自上海某基坑工程,埋深为10 m。为尽可能减小对土样的扰动,本次试验现场取样采用PVC管切土法。当基坑机械开挖到近10 m深度时,人工铲除取土位置表层覆土,沿一侧向下挖取深度大于2 m的断面,观察并判断土层情况,选择合适的取土位置;将内外壁均涂有硅油的PVC管(直径为250 mm,高度为200 mm)水平压入土层,切取块状土样;土样切取好后,两端皆涂上薄层黄油,并依次用保鲜膜、塑料薄膜缠绕密封,盖上PVC圆形平板,贴上土样记录标签,用胶带再次多层密封。试验土样基本物理性质见表1。
表1原状软黏土基本物理性质
Tab.1Basic Physical Properties of Undisturbed Soft Clay
天然质量含水量w/%液限wL/%塑限wP/%塑性指数IP液性指数IL相对密度Gs初始孔隙比e0超固结比
51.844.1722.421.771.352.741.4021.0
由表1可知,原状软黏土质量含水量高于液限,孔隙比大于1.0,试样饱和度达到98%以上,超固结比为1.0,属于正常固结饱和软黏土。根据10 m以上各土层的有效重度及其厚度,计算得到原位竖向应力σ′vc为686 kPa。
2软黏土结构性及各向异性
2.1一维固结试验
为考察结构性对上海天然沉积软黏土一维压缩性状的影响,对软黏土原状样进行了24 h的标准固结试验。试验所得孔隙比e与竖向有效固结压力σ′v的关系见图1。由图1可见,压缩曲线存在明显的拐点(即结构屈服破坏点),屈服点处所对应的结构屈服应力σ′y为1105 kPa,大于试样的前期固结压力,对于本次试验的正常固结土,前期固结压力即为其上覆有效自重应力σ′vc。结构屈服应力大于有效上覆应力是天然沉积土受到土结构性影响的主要特征之一。在结构屈服破坏前后,土的压缩性存在显著区别,在固结压力未达到土的结构屈服应力时,由于结构初始抗力的存在,孔隙比的变化量较小,压缩曲线较为平缓;
而当固结压力超过土的结构屈服应力后,由于软黏土的结构性被破坏,孔隙比随固结压力的增大而急剧降低。根据Burland的建议,将结构屈服应力σ′y与前期固结压力的比值定义为屈服应力比[6],而龚晓南等则将此值称为结构应力比以表征土结构性的强弱[13]。按照以上建议,本次试验上海天然沉积软黏土的结构应力比近似为161。
图1软黏土一维固结试验曲线
Fig.1Test Curve of Onedimensional Consolidation for Soft Clay
需要特别指出的是,根据对结构性软黏土压缩性状的研究可知,由于天然沉积软黏土结构性的存在,使得其压缩特性在结构屈服前后存在显著差异,即压缩曲线存在突变点。但是在工程实践中,常用100~200 kPa下的压缩系数α12来表征土的压缩变形特征,这种选择加荷中间段的压缩系数作为总体压缩性评价指标的方法对于结构性显著的软黏土而言并不合理,应根据工程实际施加的荷载区间对其压缩性进行评价,否则可能引起较大偏差。
2.2K0固结试验
天然软黏土在沉积过程中,为了处于相对稳定状态,长宽比大于1的颗粒在重力作用下将倾向于水平方向排列;另一方面,在固结过程中,由于其竖向有效应力σ′vc大于其水平向有效应力σ′hc,即天然沉积软黏土往往处于K0=σ′hc/σ′vc固结状态。由于上述两方面的原因,使得天然沉积软黏土具有初始各向异性。为研究各向异性对软黏土变形性状的影响,需要对软黏土的静止侧压力系数K0进行测定。
本次研究中的K0固结试验以及等压和偏压固结三轴不排水剪切试验均采用GDS应力路径三轴仪来完成。10 m深处软黏土K0系数的测定结果见图2。由试验曲线得到上海天然沉积软黏土的静止侧压力系数K0为0.6。由于试验土样对应的竖向有效应力σ′vc=68.6 kPa,根据K0系数可计算得到水平向有效应力σ′hc=41 kPa,并进一步确定其原位平均有效固结应力p′0=50.3 kPa。
图2软黏土的K0系数
Fig.2K0 Coefficient for Soft Clay
2.3三轴不排水剪切试验
为进一步调查结构性及各向异性对天然沉积软黏土变形性状的影响,对上海天然沉积软黏土进行了等压及偏压固结模式下的三轴不排水剪切试验。偏压固结中采用的K0系数为K0固结试验中测得的06,试验中采用的固结应力见表2。其中:偏压固结试验CAU1与等压固结试验CIU1对应,二者的平均有效固结压力均为50 kPa,与现场的原位平均有效固结应力p′0(50.3 kPa)相近;偏压固结试验CAU2与等压固结试验CIU2对应,二者的平均有效固结压力均为100 kPa,接近但仍低于结构屈服应力σ′y(110.5 kPa);偏压固结试验CAU3与等压固结试验CIU5对应,二者的平均有效固结压力均为300 kPa,远大于软黏土的结构屈服应力。
表2软黏土三轴不排水剪切试验固结条件
Tab.2Consolidation Conditions of Triaxial Undrained Shear Tests for Soft Clay
固结模式等压固结不排水偏压固结不排水
试验编号CIU1CIU2CIU3CIU4CIU5CAU1CAU2CAU3
σ′hc/kPa50.0100.0150.0200.0300.041.081.8245.0
σ′vc/kPa50.0100.0150.0200.0300.068.6136.4408.3
图3软黏土三轴不排水试验应力路径曲线
Fig.3Stress Path Curves of Triaxial Undrained Shear Tests for Soft Clay
图3为等压和偏压固结测试所得到的试验应力路径曲线。由图3可见,两种固结模式下的各组试验曲线最终都趋近于同一临界状态线。其中,CAU3试验所对应的应力路径曲线与最终临界状态线存在一定距离,这是在较高的偏压固结应力下仪器位移传感器的量程限制所导致的。由图3确定的软黏土临界状态线的斜率Mc为1277,与其对应的有效内摩擦角φ′为318°。其中:q为偏应力;p为平均应力。
2.3.1初始固结应力
图4给出了不同等压固结应力下上海天然沉积软黏土三轴不排水剪切的应力应变(ε1)曲线。图4(a)中,CIU1和CIU2试验初始固结应力均低于软黏土的结构屈服应力(σ′y=110.5 kPa);图4(b)中,CIU3、CIU4和CIU5试验初始固结应力均高于软黏土的结构屈服应力。图5给出了不同等压固结应力下三轴不排水剪切的孔压(u)应变曲线。
图4等压固结三轴不排水剪切试验应力应变曲线
Fig.4Stressstrain Curves of Triaxial Undrained Shear Tests Under Isotropic Consolidation Mode
图5等压固结三轴不排水试验孔压应变曲线
Fig.5Pore Water Pressurestrain Curves of Triaxial
Undrained Shear Tests Under Isotropic Consolidation Mode
由图4、5可见:随着初始有效固结应力的增加,软黏土的不排水剪切强度增大,孔隙水压力亦逐渐升高;在初始有效固结应力低于软黏土的结构屈服应力时,由于固结应力偏低,软黏土的初始结构性得以保留,应力应变曲线呈应变软化型,即在应力达到峰值后,随着应变的继续增加,应力呈降低趋势,应力应变曲线存在拐点;随着初始固结应力的增加,当其超过结构屈服应力后,由于在固结阶段土的初始结构性已被破坏,土的性质与重塑土类似,应力应变曲线呈现硬化型特征,不存在拐点。
图6给出了两组偏压固结应力下上海天然沉积软黏土三轴不排水剪切的应力应变曲线。图6(a)中,CAU1和CAU2试验初始固结应力均低于软黏土的结构屈服应力;图6(b)中,CAU3试验初始固结应力高于软黏土的结构屈服应力。图7给出了不同偏压固结应力下三轴不排水剪切的孔压应变曲线。
由图6、7可见:与等压固结的规律相类似,随着初始平均有效固结应力从CAU1试验对应的50 kPa增加到CAU3试验对应的300 kPa,软黏土的不排水剪切强度增大,孔隙水压力逐渐升高;当初始平均有效固结应力低于其结构屈服应力时,应力应变曲线均呈明显的应变软化型,而初始平均有效固结应力高于结构屈服应力时,应力应变曲线呈硬化型。
图6偏压固结三轴不排水剪切试验应力应变曲线
Fig.6Stressstrain Curves in Triaxial Undrained Shear Tests Under Anisotropic Consolidation Mode
图7偏压固结三轴不排水试验孔压应变曲线
Fig.7Pore Water Pressurestrain Curves of Triaxial Undrained Shear Tests Under Anisotropic Consolidation Mode
2.3.2固结模式
为进一步分析各向异性对天然软黏土变形性状的影响,对经历相同初始固结压力的等压和偏压固结试验进行了分析。
图8p′0=50 kPa下三轴不排水剪切试验应力应变曲线
Fig.8Stressstrain Curves of Triaxial Undrained
Shear Tests with p′0=50 kPa
图9p′0=100 kPa下三轴不排水剪切试验应力应变曲线
Fig.9Stressstrain Curves of Triaxial Undrained
Tests with p′0=100 kPa
图10p′0=100 kPa下三轴不排水剪切试验孔压应变曲线
Fig.10Pore Water Pressurestrain Curves of Triaxial
Undrained Shear Tests with p′0=100 kPa
图8、9分别给出了初始平均有效固结应力p′0分别为50 kPa和100 kPa时的等压和偏压固结模式下三轴不排水剪切应力应变关系曲线的对比情况。图8、9中,等压和偏压固结应力均低于软黏土的结构屈服应力。而图10、11是等压和偏压固结模式下三轴不排水剪切孔压应变关系曲线的对比结果。
由图8~11可见:无论是50 kPa还是100 kPa的初始平均有效固结应力,偏压固结模式所对应的不排水剪切峰值强度均高于等压固结模式,其屈服后的应变软化程度相较于等压固结模式而言更加明显,说明天然沉积软黏土各向异性程度的增加在一定程度上提高了其初始结构性;与不排水应力路径关系曲线一致,在不排水剪切强度达到峰值后,随着结构性的损伤,等压和偏压固结模式下应力应变曲线逐渐趋于重合;在初始固结应力相等的前提下,等压固结模式下产生的孔隙水压力较偏压固结模式下要高。
图11p′0=100 kPa下三轴不排水剪切试验孔压应变曲线
Fig.11Pore Water Pressurestrain Curves of Triaxial
Undrained Shear Tests with p′0=100 kPa
图12p′0=300 kPa下三轴不排水剪切试验应力应变曲线
Fig.12Stressstrain Curves of Triaxial Undrained
Shear Tests with p′0=300 kPa
图13p′0=300 kPa下三轴不排水剪切试验孔压应变曲线
Fig.13Pore Water Pressurestrain Curves of Triaxial
Undrained Shear Tests with p′0=300 kPa
图12、13分别给出了初始平均有效固结应力p′0为300 kPa时等压和偏压固结模式下三轴不排水剪切应力应变关系曲线以及孔压应变关系曲线的对比情况。图12、13中,等压和偏压固结应力远高于软黏土的结构屈服应力。
由图12、13可见:与50 kPa以及100 kPa的平均有效固结应力相类似,在300 kPa的固结应力下,偏压固结模式所对应的不排水剪切峰值强度高于等压固结模式,而孔隙水压力则低于等压固结模式下的孔隙水压力;与低于结构屈服应力的50 kPa以及100 kPa固结压力相比,由于作用的初始固结应力300 kPa远大于其结构屈服应力,所以软黏土的大部分结构性在等压及偏压固结阶段已经被破坏,致使其应力应变曲线完全呈现硬化型特征,且完全没有重合的趋势。
3结语
(1)上海天然沉积软黏土具有明显的结构性及各向异性特征。
(2)一维压缩曲线存在明显的结构屈服应力点,压缩特性在结构屈服破坏前后存在显著差别。在固结压力未达到结构屈服应力前,由于结构初始抗力的存在,孔隙比变化量小;当固结压力超过土的结构屈服应力时,大部分初始结构被破坏,孔隙比大幅度降低。
(3)不同初始固结应力下的等压及偏压固结不排水应力路径曲线最终都趋近于同一临界状态,验证了临界状态在高应变时对软黏土的适用性。
(4)在初始有效固结应力低于软黏土的结构屈服应力时,三轴不排水应力应变曲线呈应变软化型,随着初始固结应力的增加,当其超过结构屈服应力后,应力应变曲线逐渐呈现硬化型特征。
(5)在初始固结应力相同且低于结构屈服应力的前提下,偏压固结模式所对应的不排水剪切峰值强度高于等压固结模式,其屈服后的应变软化程度相较于等压固结模式而言更加明显;在不排水剪切强度达到峰值后,等压和偏压固结模式下的不排水应力应变曲线逐渐趋于重合;而在初始固结应力高于结构屈服应力的情况下,偏压固结模式的峰值剪切强度仍然高于等压固结模式,但二者的不排水应力应变曲线均呈硬化型,无重合的趋势。
(6)无论是等压还是偏压固结,随着初始固结应力的增加,孔隙水压力逐渐增大;在初始固结应力相等的情况下,等压固结模式下产生的孔隙水压力较偏压模式下要高。
(7)对于天然沉积软黏土而言,结构性及各向异性对其变形性状有重要影响。在本构关系的建立中,要对这两个因素应进行合理考虑。由于试验仪器的限制,本文所进行的三轴试验研究并不能灵活考虑主应力系数及初始各向异性角度对软黏土变形及强度性状的影响,需要在后续工作中考虑。
参考文献:
References:
[1]沈珠江.土体结构性的数学模型——21世纪土力学的核心问题[J].岩土工程学报,1996,18(1):9597.
SHEN Zhujiang.An Elastoplastic Damage Model for Cemented Clays—Essential Question of Soil Mechanics in 21th Century[J].Chinese Journal of Geotechnical Engineering,1996,18(1):9597.
[2]刘恩龙,罗开泰,张树祎.初始应力各向异性结构性土的二元介质模型[J].岩土力学,2013,34(11):31033109.
LIU Enlong,LUO Kaitai,ZHANG Shuyi.Binary Medium Model for Structured Soils with Initial Stressinduced Anisotropy[J].Rock and Soil Mechanics,2013,34(11):31033109.
[3]安然,谢康和,邓岳保,等.变荷载下结构性土一维固结近似解[J].岩土力学,2012,33(10):31943200.
AN Ran,XIE Kanghe,DENG Yuebao,et al.Approximate Solution for Onedimensional Consolidation of Structured Soils Under Timedependent Loading[J].Rock and Soil Mechanics,2012,33(10):31943200.
[4]LEROUEIL S,VAUGHAN P R.The General and Congruent Effects of Structure in Natural Soils and Weak Rocks[J].Geotechnique 1990,40(3):467488.
[5]谢定义,齐吉琳.土结构性及其定量化参数研究的新途径[J].岩土工程学报,1999,21(6):651656.
XIE Dingyi,QI Jilin.Soil Structure Characteristics and New Approach in Research on Its Quantitative Parameter[J].Chinese Journal of Geotechnical Engineering,1999,21(6):651656.
[6]BURLAND J B.On the Compressibility and Shear Strength of Natural Clays[J].Geotechnique,1990,40(3):329378.
[7]SMITH P R,JARDINE R J,HIGHT D W.The Yielding of Bothkennar Clay[J].Geotechnique,1992,42(2):257274.
[8]CALLISTO L,CALABRESI G.Mechanical Behaviour of a Natural Soft Clay[J].Geotechnique,1998,48(4):495513.
[9]CHAI J C,MIURA N,ZHU H H,et al.Compression and Consolidation Characteristics of Structured Natural Clay[J].Canadian Geotechnical Journal,2004,41(6):12501258.
[10]HONG Z S,YIN J,CUI Y J.Compression Behaviour of Reconstituted Soils at High Initial Water Contents[J].Geotechnique,2010,60(9):691700.
[11]CHUNG S G,PRASAD K N,NAGARAJ T S,et al.Assessment of Compressibility Behavior of Naturally Cemented Soft Clays[J].Marine Georesources and Geotechnology,2004,22(1/2):120.
[12]殷杰.土结构性对天然软黏土压缩特性的影响[J].岩土力学,2012,33(1):4852.
YIN Jie.Effect of Soil Structure on Compression Behavior of Natural Soft Clays[J].Rock and Soil Mechanics,2012,33(1):4852.
[13]龚晓南,熊传祥,项可祥,等.粘土结构性对其力学性质的影响及形成原因分析[J].水利学报,2000,31(10):4347.
GONG Xiaonan,XIONG Chuanxiang,XIANG Kexiang,et.al.The Formation of Clay Structure and Its Influence on Mechanical Characteristics of Clay[J].Journal of Hydraulic Engineering,2000,31(10):4347.
[14]曹宇春,杨建辉.基于有效固结应力法确定结构性黏性土不排水抗剪强度[J].岩土力学,2013,34(11):30853090.
CAO Yuchun,YANG Jianhui.Undrained Shear Strength Determination of Structured Clays Based on Effective Consolidation Stress Method[J].Rock and Soil Mechanics,2013,34(11):30853090.
[15]曾玲玲,洪振舜,刘松玉,等.天然沉积结构性土的次固结变形预测方法[J].岩土力学,2011,32(10):31363142.
ZENG Lingling,HONG Zhenshun,LIU Songyu,et al.A Method for Predicting Deformation Caused by Secondary Consolidation for Naturally Sedimentary Structural Clays[J].Rock and Soil Mechanics,2011,32(10):31363142.
[16]陈昌禄,邵生俊,佘芳涛.土结构性变化对开挖边坡稳定性的影响分析[J].岩土工程学报,2011,33(12):19381942.
CHEN Changlu,SHAO Shengjun,SHE Fangtao.Impact of Structural Change of Soils on Stability in Slope Excavation[J].Chinese Journal of Geotechnical Engineering,2011,33(12):19381942.
[17]刘恩龙,罗开泰.轴向循环加载条件下人工制备结构性土力学特性[J].北京工业大学学报,2012,38(2):180185.
LIU Enlong,LUO Kaitai.Mechanical Properties of Artificially Prepared Structured Soils Subjected to Axially Cyclic Loading[J].Journal of Beijing University of Technology,2012,38(2):180185.
[18]齐吉琳,谢定义.孔隙分布曲线及其在土的结构性分析中的应用[J].西安公路交通大学学报,2000,20(2):68.
QI Jilin,XIE Dingyi.The Pore Size Distribution Curve and Its Application in Soil Structure Analysis[J].Journal of Xian Highway University,2000,20(2):68.
[19]丁伯阳,张勇.杭州第四系软土动力特性试验与土结构性影响的探讨[J].岩土力学,2012,33(2):336342.
DING Boyang,ZHANG Yong.Discussion on Dynamic Test and Characteristics of Structural Properties of Quaternary Soft Clay in Hangzhou Region[J].Rock and Soil Mechanics,2012,33(2):336342.
[20]方丽莉,齐吉琳,马巍.冻融作用对土结构性的影响及其导致的强度变化[J].冰川冻土,2012,34(2):435440.
FANG Lili,QI Jilin,MA Wei.Freezethaw Induced Changes in Soil Structure and Its Relationship with Variations in Strength[J].Journal of Glaciology and Geocryology,2012,34(2):435440.
[21]王军,陈云敏.考虑土结构性影响的砂井地基固结度计算[J].中国公路学报,2001,14(2):2226.
WANG Jun,CHEN Yunmin.Calculation of Sand Drains Ground Consolidation Degree with Consideration of Soil Structure Characteristics Influence[J].China Journal of Highway and Transport,2001,14(2):2226.
[22]雷华阳,姜岩,陆培毅,等.交通荷载作用下结构性软土的孔径分布试验[J].中国公路学报,2009,22(2):611.
LEI Huayang,JIANG Yan,LU Peiyi,et al.Pore Size Distribution Test of Structural Soft Soil Under Traffic Loading[J].China Journal of Highway and Transport,2009,22(2):611.
[23]姜岩,雷华阳,郑刚,等.循环荷载下结构性软土变形预测[J].交通运输工程学报,2011,11(1):1318.
JIANG Yan,LEI Huayang,ZHENG Gang,et al.Deformation Prediction of Structured Soft Clay Under Cyclic Load[J].Journal of Traffic and Transportation Engineering,2011,11(1):1318.
[24]LADD C C,FOOTT R.The Behavior of Embankments on Clay Foundations:Discussion[J].Canadian Geotechnical Journal,1980,17(3):454460.
[25]王洪瑾,张国平,周克骥.固有和诱发各向异性对击实粘性土强度和变形特性的影响[J].岩土工程学报,1996,18(3):110.
WANG Hongjin,ZHANG Guoping,ZHOU Keji.Effects of Inherent and Induced Anisotropy on Strength and Deformation Characteristics of Compacted Cohesive Soil[J].Chinese Journal of Geotechnical Engineering,1996,18(3):110.
[26]DIAZRODRIGUEZ J A,LEROUEIL S,ALEMAN J D.Yielding of Mexico City Clay and Other Natural Clays[J].Journal of Geotechnical Engineering,1992,118(7):981995.
[27]沈恺伦,王立忠.天然软黏土屈服面及流动法则试验研究[J].土木工程学报,2009,42(4):119127.
SHEN Kailun,WANG Lizhong.Experimental Study on the Yield Surface and Flow Rule of Natural Clays[J].China Civil Engineering Journal,2009,42(4):119127.
[28]范庆来,栾茂田.各向异性软黏土地基上浅基础破坏包络面研究[J].岩石力学与工程学报,2010,29(11):23622369.
FAN Qinglai,LUAN Maotian.Study of Failure Envelope of Shallow Foundation on Anisotropic Soft Clay[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(11):23622369.
[29]严佳佳,李伯安,陈利明,等.原状软粘土各向异性及其对工程影响研究[J].西北地震学报,2011,33(增):155159.
YAN Jiajia,LI Boan,CHEN Liming,et al.Anisotropy of Undisturbed Soft Clay and Its Influence on Practical Engineering[J].Northwestern Seismological Journal,2011,33(S):155159.
[30]ZDRAVKOVIC L,POTTS D M,HIGHT D W.The Effect of Strength Anisotropy on the Behaviour of Embankments on Soft Ground[J].Geotechnique,2002,52(6):447457.
[31]张茂花,谢永利,刘保健.湿陷性黄土变形的各向异性及与浸水路径的无关性[J].中国公路学报,2006,19(4):1116.
ZHANG Maohua,XIE Yongli,LIU Baojian.Anisotropy of Collapsible Loess Deformation and Independence of Deformation and Soak Paths[J].China Journal of Highway and Transport,2006,19(4):1116.
[32]罗开泰,聂青,张树祎,等.人工制备初始应力各向异性结构性土方法探讨[J].岩土力学,2013,34(10):28152820,2834.
LUO Kaitai,NIE Qing,ZHANG Shuyi,et al.Investigation on Artificially Structured Soils with Initial Stressinduced Anisotropy[J].Rock and Soil Mechanics,2013,34(10):28152820,2834.
[33]雷华阳,姜岩,陆培毅.循环荷载作用下软粘土的强度判别标准试验[J].长安大学学报:自然科学版,2009,29(6):5458.
LEI Huayang,JIANG Yan,LU Peiyi.Test on Shear Strength Criterion of Soft Soil Under Cyclic Loading[J].Journal of Changan University:Natural Science Edition,2009,29(6):5458.
[28]范庆来,栾茂田.各向异性软黏土地基上浅基础破坏包络面研究[J].岩石力学与工程学报,2010,29(11):23622369.
FAN Qinglai,LUAN Maotian.Study of Failure Envelope of Shallow Foundation on Anisotropic Soft Clay[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(11):23622369.
[29]严佳佳,李伯安,陈利明,等.原状软粘土各向异性及其对工程影响研究[J].西北地震学报,2011,33(增):155159.
YAN Jiajia,LI Boan,CHEN Liming,et al.Anisotropy of Undisturbed Soft Clay and Its Influence on Practical Engineering[J].Northwestern Seismological Journal,2011,33(S):155159.
[30]ZDRAVKOVIC L,POTTS D M,HIGHT D W.The Effect of Strength Anisotropy on the Behaviour of Embankments on Soft Ground[J].Geotechnique,2002,52(6):447457.
[31]张茂花,谢永利,刘保健.湿陷性黄土变形的各向异性及与浸水路径的无关性[J].中国公路学报,2006,19(4):1116.
ZHANG Maohua,XIE Yongli,LIU Baojian.Anisotropy of Collapsible Loess Deformation and Independence of Deformation and Soak Paths[J].China Journal of Highway and Transport,2006,19(4):1116.
[32]罗开泰,聂青,张树祎,等.人工制备初始应力各向异性结构性土方法探讨[J].岩土力学,2013,34(10):28152820,2834.
LUO Kaitai,NIE Qing,ZHANG Shuyi,et al.Investigation on Artificially Structured Soils with Initial Stressinduced Anisotropy[J].Rock and Soil Mechanics,2013,34(10):28152820,2834.
[33]雷华阳,姜岩,陆培毅.循环荷载作用下软粘土的强度判别标准试验[J].长安大学学报:自然科学版,2009,29(6):5458.
LEI Huayang,JIANG Yan,LU Peiyi.Test on Shear Strength Criterion of Soft Soil Under Cyclic Loading[J].Journal of Changan University:Natural Science Edition,2009,29(6):5458.
[28]范庆来,栾茂田.各向异性软黏土地基上浅基础破坏包络面研究[J].岩石力学与工程学报,2010,29(11):23622369.
FAN Qinglai,LUAN Maotian.Study of Failure Envelope of Shallow Foundation on Anisotropic Soft Clay[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(11):23622369.
[29]严佳佳,李伯安,陈利明,等.原状软粘土各向异性及其对工程影响研究[J].西北地震学报,2011,33(增):155159.
YAN Jiajia,LI Boan,CHEN Liming,et al.Anisotropy of Undisturbed Soft Clay and Its Influence on Practical Engineering[J].Northwestern Seismological Journal,2011,33(S):155159.
[30]ZDRAVKOVIC L,POTTS D M,HIGHT D W.The Effect of Strength Anisotropy on the Behaviour of Embankments on Soft Ground[J].Geotechnique,2002,52(6):447457.
[31]张茂花,谢永利,刘保健.湿陷性黄土变形的各向异性及与浸水路径的无关性[J].中国公路学报,2006,19(4):1116.
ZHANG Maohua,XIE Yongli,LIU Baojian.Anisotropy of Collapsible Loess Deformation and Independence of Deformation and Soak Paths[J].China Journal of Highway and Transport,2006,19(4):1116.
[32]罗开泰,聂青,张树祎,等.人工制备初始应力各向异性结构性土方法探讨[J].岩土力学,2013,34(10):28152820,2834.
LUO Kaitai,NIE Qing,ZHANG Shuyi,et al.Investigation on Artificially Structured Soils with Initial Stressinduced Anisotropy[J].Rock and Soil Mechanics,2013,34(10):28152820,2834.
[33]雷华阳,姜岩,陆培毅.循环荷载作用下软粘土的强度判别标准试验[J].长安大学学报:自然科学版,2009,29(6):5458.
LEI Huayang,JIANG Yan,LU Peiyi.Test on Shear Strength Criterion of Soft Soil Under Cyclic Loading[J].Journal of Changan University:Natural Science Edition,2009,29(6):5458.
基金项目:国家自然科学基金项目(51208055);中国博士后科学基金项目(2012M511960)
摘要:针对结构性和各向异性两大要素对天然软黏土变形性状的影响,对上海天然沉积软黏土进行一维固结试验、K0固结试验以及三轴不排水剪切试验。结果表明:上海天然沉积软黏土具有明显的结构性及各向异性特征;压缩特性在结构屈服破坏前后存在显著差别,具有结构性软黏土所特有的分段特征;不同初始固结应力下的等压及偏压固结不排水应力路径曲线最终都趋近于同一临界状态;在初始有效固结应力低于软黏土的结构屈服应力时,应力应变曲线呈应变软化型,随着初始有效固结应力的增加,当其超过结构屈服应力后,应力应变曲线逐渐呈现硬化型特征;在初始有效固结应力相同且低于结构屈服应力的前提下,偏压固结模式所对应的不排水剪切峰值强度高于等压固结模式,且屈服后的应变软化程度相较于等压固结模式更高;在不排水剪切强度达到峰值后,等压和偏压固结模式下的应力应变曲线逐渐趋于重合;在初始有效固结应力相等的情况下,等压固结模式下产生的孔隙水压力较偏压模式下要高。
关键词:岩土工程;软黏土;固结试验;结构性;各向异性;变形
中图分类号:P642.13;TU41文献标志码:A
Test on Deformation Character of Soft Clay Based on Structure and Anisotropy
LIU Yanhua, XIE Yongli
(School of Highway, Changan University, Xian 710064, Shaanxi, China)
Abstract: In order to find the influence of structure and anisotropy on deformation character of natural soft clay, onedimensional consolidation test, K0 consolidation test and triaxial undrained shear test were carried out for soft clay from natural sedimentation in Shanghai. The results show that the properties of soft clay from natural sedimentation in Shanghai are characterized by structure and anisotropy; the compression properties are significantly different before and after structural yielding, and the compression curve is divided into two parts as structural soft soil; the undrained stress path curves with different initial consolidation stresses finally approach the same critical state under isotropic and anisotropic consolidation modes; when initial effective consolidation stress is lower than structural yielding stress of soft clay, the stressstrain curve is strain softening, and when the initial stress is higher than the yielding stress, the characteristic of
stressstrain curve is gradually hardening with the increase of the initial stress; when the initial stresses are the same, and are lower than the yielding stress, the peak of undrained shear strength under anisotropic consolidation mode is higher than that under isotropic consolidation mode, and the strain softening after yielding is higher than that under isotropic consolidation mode; after the peak of undrained shear strength arrives, the stressstain curves under isotropic and anisotropic consolidation modes approach coincidence; when the initial stresses are the same, the pore water pressure under isotropic consolidation mode is higher than that under anisotropic consolidation mode.
Key words: geotechnical engineering; soft clay; consolidation test; structure; anisotropy; deformation
0引言
关于土结构性研究的重要性,由土力学的奠基人太沙基最早指出,中国沈珠江将其称为“21世纪土力学的核心”[1]。从广义上讲,大部分天然沉积土均具有一定的结构性,而且有些黏土还具有很强的结构性,如日本的有明黏土、瑞典黏土和中国湛江黏土等。作为天然沉积土的一个重要特性,结构性对土的工程性质有着不可忽视的影响[24],它是决定各类土力学性状的一个最为根本的因素[5]。在过去的几十年,关于结构性的研究在岩土工程领域已经引起广泛重视,尤其是对天然沉积软黏土结构性的研究。结构性对软黏土的压缩性、强度特性、渗透性、应力应变关系以及屈服特性均有着重要影响[623]。由于结构性的存在,使得天然沉积软黏土与其相应的重塑土有着截然不同的性质。同时,天然沉积软黏土在沉积和固结过程中形成的固有各向异性以及在后期复杂加载状态下所形成的应力诱发各向异性是天然沉积土的另一个重要特性。国内外诸多学者通过试验证明了各向异性的广泛存在,且对软黏土的强度和应力应变关系有着显著影响[2433]。
对于软黏土而言,在其沉积和固结过程中,结构性和各向异性的形成是互为影响、不可分割的。同时,二者对天然软黏土力学性状的影响也是相互作用、密不可分的。笔者围绕结构性及各向异性两大因素,对上海天然沉积软黏土进行了一系列试验研究,就结构性和各向异性对天然软黏土变形性状的影响进行了探讨。
1试样概况
本次试验的原状软黏土取自上海某基坑工程,埋深为10 m。为尽可能减小对土样的扰动,本次试验现场取样采用PVC管切土法。当基坑机械开挖到近10 m深度时,人工铲除取土位置表层覆土,沿一侧向下挖取深度大于2 m的断面,观察并判断土层情况,选择合适的取土位置;将内外壁均涂有硅油的PVC管(直径为250 mm,高度为200 mm)水平压入土层,切取块状土样;土样切取好后,两端皆涂上薄层黄油,并依次用保鲜膜、塑料薄膜缠绕密封,盖上PVC圆形平板,贴上土样记录标签,用胶带再次多层密封。试验土样基本物理性质见表1。
表1原状软黏土基本物理性质
Tab.1Basic Physical Properties of Undisturbed Soft Clay
天然质量含水量w/%液限wL/%塑限wP/%塑性指数IP液性指数IL相对密度Gs初始孔隙比e0超固结比
51.844.1722.421.771.352.741.4021.0
由表1可知,原状软黏土质量含水量高于液限,孔隙比大于1.0,试样饱和度达到98%以上,超固结比为1.0,属于正常固结饱和软黏土。根据10 m以上各土层的有效重度及其厚度,计算得到原位竖向应力σ′vc为686 kPa。
2软黏土结构性及各向异性
2.1一维固结试验
为考察结构性对上海天然沉积软黏土一维压缩性状的影响,对软黏土原状样进行了24 h的标准固结试验。试验所得孔隙比e与竖向有效固结压力σ′v的关系见图1。由图1可见,压缩曲线存在明显的拐点(即结构屈服破坏点),屈服点处所对应的结构屈服应力σ′y为1105 kPa,大于试样的前期固结压力,对于本次试验的正常固结土,前期固结压力即为其上覆有效自重应力σ′vc。结构屈服应力大于有效上覆应力是天然沉积土受到土结构性影响的主要特征之一。在结构屈服破坏前后,土的压缩性存在显著区别,在固结压力未达到土的结构屈服应力时,由于结构初始抗力的存在,孔隙比的变化量较小,压缩曲线较为平缓;
而当固结压力超过土的结构屈服应力后,由于软黏土的结构性被破坏,孔隙比随固结压力的增大而急剧降低。根据Burland的建议,将结构屈服应力σ′y与前期固结压力的比值定义为屈服应力比[6],而龚晓南等则将此值称为结构应力比以表征土结构性的强弱[13]。按照以上建议,本次试验上海天然沉积软黏土的结构应力比近似为161。
图1软黏土一维固结试验曲线
Fig.1Test Curve of Onedimensional Consolidation for Soft Clay
需要特别指出的是,根据对结构性软黏土压缩性状的研究可知,由于天然沉积软黏土结构性的存在,使得其压缩特性在结构屈服前后存在显著差异,即压缩曲线存在突变点。但是在工程实践中,常用100~200 kPa下的压缩系数α12来表征土的压缩变形特征,这种选择加荷中间段的压缩系数作为总体压缩性评价指标的方法对于结构性显著的软黏土而言并不合理,应根据工程实际施加的荷载区间对其压缩性进行评价,否则可能引起较大偏差。
2.2K0固结试验
天然软黏土在沉积过程中,为了处于相对稳定状态,长宽比大于1的颗粒在重力作用下将倾向于水平方向排列;另一方面,在固结过程中,由于其竖向有效应力σ′vc大于其水平向有效应力σ′hc,即天然沉积软黏土往往处于K0=σ′hc/σ′vc固结状态。由于上述两方面的原因,使得天然沉积软黏土具有初始各向异性。为研究各向异性对软黏土变形性状的影响,需要对软黏土的静止侧压力系数K0进行测定。
本次研究中的K0固结试验以及等压和偏压固结三轴不排水剪切试验均采用GDS应力路径三轴仪来完成。10 m深处软黏土K0系数的测定结果见图2。由试验曲线得到上海天然沉积软黏土的静止侧压力系数K0为0.6。由于试验土样对应的竖向有效应力σ′vc=68.6 kPa,根据K0系数可计算得到水平向有效应力σ′hc=41 kPa,并进一步确定其原位平均有效固结应力p′0=50.3 kPa。
图2软黏土的K0系数
Fig.2K0 Coefficient for Soft Clay
2.3三轴不排水剪切试验
为进一步调查结构性及各向异性对天然沉积软黏土变形性状的影响,对上海天然沉积软黏土进行了等压及偏压固结模式下的三轴不排水剪切试验。偏压固结中采用的K0系数为K0固结试验中测得的06,试验中采用的固结应力见表2。其中:偏压固结试验CAU1与等压固结试验CIU1对应,二者的平均有效固结压力均为50 kPa,与现场的原位平均有效固结应力p′0(50.3 kPa)相近;偏压固结试验CAU2与等压固结试验CIU2对应,二者的平均有效固结压力均为100 kPa,接近但仍低于结构屈服应力σ′y(110.5 kPa);偏压固结试验CAU3与等压固结试验CIU5对应,二者的平均有效固结压力均为300 kPa,远大于软黏土的结构屈服应力。
表2软黏土三轴不排水剪切试验固结条件
Tab.2Consolidation Conditions of Triaxial Undrained Shear Tests for Soft Clay
固结模式等压固结不排水偏压固结不排水
试验编号CIU1CIU2CIU3CIU4CIU5CAU1CAU2CAU3
σ′hc/kPa50.0100.0150.0200.0300.041.081.8245.0
σ′vc/kPa50.0100.0150.0200.0300.068.6136.4408.3
图3软黏土三轴不排水试验应力路径曲线
Fig.3Stress Path Curves of Triaxial Undrained Shear Tests for Soft Clay
图3为等压和偏压固结测试所得到的试验应力路径曲线。由图3可见,两种固结模式下的各组试验曲线最终都趋近于同一临界状态线。其中,CAU3试验所对应的应力路径曲线与最终临界状态线存在一定距离,这是在较高的偏压固结应力下仪器位移传感器的量程限制所导致的。由图3确定的软黏土临界状态线的斜率Mc为1277,与其对应的有效内摩擦角φ′为318°。其中:q为偏应力;p为平均应力。
2.3.1初始固结应力
图4给出了不同等压固结应力下上海天然沉积软黏土三轴不排水剪切的应力应变(ε1)曲线。图4(a)中,CIU1和CIU2试验初始固结应力均低于软黏土的结构屈服应力(σ′y=110.5 kPa);图4(b)中,CIU3、CIU4和CIU5试验初始固结应力均高于软黏土的结构屈服应力。图5给出了不同等压固结应力下三轴不排水剪切的孔压(u)应变曲线。
图4等压固结三轴不排水剪切试验应力应变曲线
Fig.4Stressstrain Curves of Triaxial Undrained Shear Tests Under Isotropic Consolidation Mode
图5等压固结三轴不排水试验孔压应变曲线
Fig.5Pore Water Pressurestrain Curves of Triaxial
Undrained Shear Tests Under Isotropic Consolidation Mode
由图4、5可见:随着初始有效固结应力的增加,软黏土的不排水剪切强度增大,孔隙水压力亦逐渐升高;在初始有效固结应力低于软黏土的结构屈服应力时,由于固结应力偏低,软黏土的初始结构性得以保留,应力应变曲线呈应变软化型,即在应力达到峰值后,随着应变的继续增加,应力呈降低趋势,应力应变曲线存在拐点;随着初始固结应力的增加,当其超过结构屈服应力后,由于在固结阶段土的初始结构性已被破坏,土的性质与重塑土类似,应力应变曲线呈现硬化型特征,不存在拐点。
图6给出了两组偏压固结应力下上海天然沉积软黏土三轴不排水剪切的应力应变曲线。图6(a)中,CAU1和CAU2试验初始固结应力均低于软黏土的结构屈服应力;图6(b)中,CAU3试验初始固结应力高于软黏土的结构屈服应力。图7给出了不同偏压固结应力下三轴不排水剪切的孔压应变曲线。
由图6、7可见:与等压固结的规律相类似,随着初始平均有效固结应力从CAU1试验对应的50 kPa增加到CAU3试验对应的300 kPa,软黏土的不排水剪切强度增大,孔隙水压力逐渐升高;当初始平均有效固结应力低于其结构屈服应力时,应力应变曲线均呈明显的应变软化型,而初始平均有效固结应力高于结构屈服应力时,应力应变曲线呈硬化型。
图6偏压固结三轴不排水剪切试验应力应变曲线
Fig.6Stressstrain Curves in Triaxial Undrained Shear Tests Under Anisotropic Consolidation Mode
图7偏压固结三轴不排水试验孔压应变曲线
Fig.7Pore Water Pressurestrain Curves of Triaxial Undrained Shear Tests Under Anisotropic Consolidation Mode
2.3.2固结模式
为进一步分析各向异性对天然软黏土变形性状的影响,对经历相同初始固结压力的等压和偏压固结试验进行了分析。
图8p′0=50 kPa下三轴不排水剪切试验应力应变曲线
Fig.8Stressstrain Curves of Triaxial Undrained
Shear Tests with p′0=50 kPa
图9p′0=100 kPa下三轴不排水剪切试验应力应变曲线
Fig.9Stressstrain Curves of Triaxial Undrained
Tests with p′0=100 kPa
图10p′0=100 kPa下三轴不排水剪切试验孔压应变曲线
Fig.10Pore Water Pressurestrain Curves of Triaxial
Undrained Shear Tests with p′0=100 kPa
图8、9分别给出了初始平均有效固结应力p′0分别为50 kPa和100 kPa时的等压和偏压固结模式下三轴不排水剪切应力应变关系曲线的对比情况。图8、9中,等压和偏压固结应力均低于软黏土的结构屈服应力。而图10、11是等压和偏压固结模式下三轴不排水剪切孔压应变关系曲线的对比结果。
由图8~11可见:无论是50 kPa还是100 kPa的初始平均有效固结应力,偏压固结模式所对应的不排水剪切峰值强度均高于等压固结模式,其屈服后的应变软化程度相较于等压固结模式而言更加明显,说明天然沉积软黏土各向异性程度的增加在一定程度上提高了其初始结构性;与不排水应力路径关系曲线一致,在不排水剪切强度达到峰值后,随着结构性的损伤,等压和偏压固结模式下应力应变曲线逐渐趋于重合;在初始固结应力相等的前提下,等压固结模式下产生的孔隙水压力较偏压固结模式下要高。
图11p′0=100 kPa下三轴不排水剪切试验孔压应变曲线
Fig.11Pore Water Pressurestrain Curves of Triaxial
Undrained Shear Tests with p′0=100 kPa
图12p′0=300 kPa下三轴不排水剪切试验应力应变曲线
Fig.12Stressstrain Curves of Triaxial Undrained
Shear Tests with p′0=300 kPa
图13p′0=300 kPa下三轴不排水剪切试验孔压应变曲线
Fig.13Pore Water Pressurestrain Curves of Triaxial
Undrained Shear Tests with p′0=300 kPa
图12、13分别给出了初始平均有效固结应力p′0为300 kPa时等压和偏压固结模式下三轴不排水剪切应力应变关系曲线以及孔压应变关系曲线的对比情况。图12、13中,等压和偏压固结应力远高于软黏土的结构屈服应力。
由图12、13可见:与50 kPa以及100 kPa的平均有效固结应力相类似,在300 kPa的固结应力下,偏压固结模式所对应的不排水剪切峰值强度高于等压固结模式,而孔隙水压力则低于等压固结模式下的孔隙水压力;与低于结构屈服应力的50 kPa以及100 kPa固结压力相比,由于作用的初始固结应力300 kPa远大于其结构屈服应力,所以软黏土的大部分结构性在等压及偏压固结阶段已经被破坏,致使其应力应变曲线完全呈现硬化型特征,且完全没有重合的趋势。
3结语
(1)上海天然沉积软黏土具有明显的结构性及各向异性特征。
(2)一维压缩曲线存在明显的结构屈服应力点,压缩特性在结构屈服破坏前后存在显著差别。在固结压力未达到结构屈服应力前,由于结构初始抗力的存在,孔隙比变化量小;当固结压力超过土的结构屈服应力时,大部分初始结构被破坏,孔隙比大幅度降低。
(3)不同初始固结应力下的等压及偏压固结不排水应力路径曲线最终都趋近于同一临界状态,验证了临界状态在高应变时对软黏土的适用性。
(4)在初始有效固结应力低于软黏土的结构屈服应力时,三轴不排水应力应变曲线呈应变软化型,随着初始固结应力的增加,当其超过结构屈服应力后,应力应变曲线逐渐呈现硬化型特征。
(5)在初始固结应力相同且低于结构屈服应力的前提下,偏压固结模式所对应的不排水剪切峰值强度高于等压固结模式,其屈服后的应变软化程度相较于等压固结模式而言更加明显;在不排水剪切强度达到峰值后,等压和偏压固结模式下的不排水应力应变曲线逐渐趋于重合;而在初始固结应力高于结构屈服应力的情况下,偏压固结模式的峰值剪切强度仍然高于等压固结模式,但二者的不排水应力应变曲线均呈硬化型,无重合的趋势。
(6)无论是等压还是偏压固结,随着初始固结应力的增加,孔隙水压力逐渐增大;在初始固结应力相等的情况下,等压固结模式下产生的孔隙水压力较偏压模式下要高。
(7)对于天然沉积软黏土而言,结构性及各向异性对其变形性状有重要影响。在本构关系的建立中,要对这两个因素应进行合理考虑。由于试验仪器的限制,本文所进行的三轴试验研究并不能灵活考虑主应力系数及初始各向异性角度对软黏土变形及强度性状的影响,需要在后续工作中考虑。
参考文献:
References:
[1]沈珠江.土体结构性的数学模型——21世纪土力学的核心问题[J].岩土工程学报,1996,18(1):9597.
SHEN Zhujiang.An Elastoplastic Damage Model for Cemented Clays—Essential Question of Soil Mechanics in 21th Century[J].Chinese Journal of Geotechnical Engineering,1996,18(1):9597.
[2]刘恩龙,罗开泰,张树祎.初始应力各向异性结构性土的二元介质模型[J].岩土力学,2013,34(11):31033109.
LIU Enlong,LUO Kaitai,ZHANG Shuyi.Binary Medium Model for Structured Soils with Initial Stressinduced Anisotropy[J].Rock and Soil Mechanics,2013,34(11):31033109.
[3]安然,谢康和,邓岳保,等.变荷载下结构性土一维固结近似解[J].岩土力学,2012,33(10):31943200.
AN Ran,XIE Kanghe,DENG Yuebao,et al.Approximate Solution for Onedimensional Consolidation of Structured Soils Under Timedependent Loading[J].Rock and Soil Mechanics,2012,33(10):31943200.
[4]LEROUEIL S,VAUGHAN P R.The General and Congruent Effects of Structure in Natural Soils and Weak Rocks[J].Geotechnique 1990,40(3):467488.
[5]谢定义,齐吉琳.土结构性及其定量化参数研究的新途径[J].岩土工程学报,1999,21(6):651656.
XIE Dingyi,QI Jilin.Soil Structure Characteristics and New Approach in Research on Its Quantitative Parameter[J].Chinese Journal of Geotechnical Engineering,1999,21(6):651656.
[6]BURLAND J B.On the Compressibility and Shear Strength of Natural Clays[J].Geotechnique,1990,40(3):329378.
[7]SMITH P R,JARDINE R J,HIGHT D W.The Yielding of Bothkennar Clay[J].Geotechnique,1992,42(2):257274.
[8]CALLISTO L,CALABRESI G.Mechanical Behaviour of a Natural Soft Clay[J].Geotechnique,1998,48(4):495513.
[9]CHAI J C,MIURA N,ZHU H H,et al.Compression and Consolidation Characteristics of Structured Natural Clay[J].Canadian Geotechnical Journal,2004,41(6):12501258.
[10]HONG Z S,YIN J,CUI Y J.Compression Behaviour of Reconstituted Soils at High Initial Water Contents[J].Geotechnique,2010,60(9):691700.
[11]CHUNG S G,PRASAD K N,NAGARAJ T S,et al.Assessment of Compressibility Behavior of Naturally Cemented Soft Clays[J].Marine Georesources and Geotechnology,2004,22(1/2):120.
[12]殷杰.土结构性对天然软黏土压缩特性的影响[J].岩土力学,2012,33(1):4852.
YIN Jie.Effect of Soil Structure on Compression Behavior of Natural Soft Clays[J].Rock and Soil Mechanics,2012,33(1):4852.
[13]龚晓南,熊传祥,项可祥,等.粘土结构性对其力学性质的影响及形成原因分析[J].水利学报,2000,31(10):4347.
GONG Xiaonan,XIONG Chuanxiang,XIANG Kexiang,et.al.The Formation of Clay Structure and Its Influence on Mechanical Characteristics of Clay[J].Journal of Hydraulic Engineering,2000,31(10):4347.
[14]曹宇春,杨建辉.基于有效固结应力法确定结构性黏性土不排水抗剪强度[J].岩土力学,2013,34(11):30853090.
CAO Yuchun,YANG Jianhui.Undrained Shear Strength Determination of Structured Clays Based on Effective Consolidation Stress Method[J].Rock and Soil Mechanics,2013,34(11):30853090.
[15]曾玲玲,洪振舜,刘松玉,等.天然沉积结构性土的次固结变形预测方法[J].岩土力学,2011,32(10):31363142.
ZENG Lingling,HONG Zhenshun,LIU Songyu,et al.A Method for Predicting Deformation Caused by Secondary Consolidation for Naturally Sedimentary Structural Clays[J].Rock and Soil Mechanics,2011,32(10):31363142.
[16]陈昌禄,邵生俊,佘芳涛.土结构性变化对开挖边坡稳定性的影响分析[J].岩土工程学报,2011,33(12):19381942.
CHEN Changlu,SHAO Shengjun,SHE Fangtao.Impact of Structural Change of Soils on Stability in Slope Excavation[J].Chinese Journal of Geotechnical Engineering,2011,33(12):19381942.
[17]刘恩龙,罗开泰.轴向循环加载条件下人工制备结构性土力学特性[J].北京工业大学学报,2012,38(2):180185.
LIU Enlong,LUO Kaitai.Mechanical Properties of Artificially Prepared Structured Soils Subjected to Axially Cyclic Loading[J].Journal of Beijing University of Technology,2012,38(2):180185.
[18]齐吉琳,谢定义.孔隙分布曲线及其在土的结构性分析中的应用[J].西安公路交通大学学报,2000,20(2):68.
QI Jilin,XIE Dingyi.The Pore Size Distribution Curve and Its Application in Soil Structure Analysis[J].Journal of Xian Highway University,2000,20(2):68.
[19]丁伯阳,张勇.杭州第四系软土动力特性试验与土结构性影响的探讨[J].岩土力学,2012,33(2):336342.
DING Boyang,ZHANG Yong.Discussion on Dynamic Test and Characteristics of Structural Properties of Quaternary Soft Clay in Hangzhou Region[J].Rock and Soil Mechanics,2012,33(2):336342.
[20]方丽莉,齐吉琳,马巍.冻融作用对土结构性的影响及其导致的强度变化[J].冰川冻土,2012,34(2):435440.
FANG Lili,QI Jilin,MA Wei.Freezethaw Induced Changes in Soil Structure and Its Relationship with Variations in Strength[J].Journal of Glaciology and Geocryology,2012,34(2):435440.
[21]王军,陈云敏.考虑土结构性影响的砂井地基固结度计算[J].中国公路学报,2001,14(2):2226.
WANG Jun,CHEN Yunmin.Calculation of Sand Drains Ground Consolidation Degree with Consideration of Soil Structure Characteristics Influence[J].China Journal of Highway and Transport,2001,14(2):2226.
[22]雷华阳,姜岩,陆培毅,等.交通荷载作用下结构性软土的孔径分布试验[J].中国公路学报,2009,22(2):611.
LEI Huayang,JIANG Yan,LU Peiyi,et al.Pore Size Distribution Test of Structural Soft Soil Under Traffic Loading[J].China Journal of Highway and Transport,2009,22(2):611.
[23]姜岩,雷华阳,郑刚,等.循环荷载下结构性软土变形预测[J].交通运输工程学报,2011,11(1):1318.
JIANG Yan,LEI Huayang,ZHENG Gang,et al.Deformation Prediction of Structured Soft Clay Under Cyclic Load[J].Journal of Traffic and Transportation Engineering,2011,11(1):1318.
[24]LADD C C,FOOTT R.The Behavior of Embankments on Clay Foundations:Discussion[J].Canadian Geotechnical Journal,1980,17(3):454460.
[25]王洪瑾,张国平,周克骥.固有和诱发各向异性对击实粘性土强度和变形特性的影响[J].岩土工程学报,1996,18(3):110.
WANG Hongjin,ZHANG Guoping,ZHOU Keji.Effects of Inherent and Induced Anisotropy on Strength and Deformation Characteristics of Compacted Cohesive Soil[J].Chinese Journal of Geotechnical Engineering,1996,18(3):110.
[26]DIAZRODRIGUEZ J A,LEROUEIL S,ALEMAN J D.Yielding of Mexico City Clay and Other Natural Clays[J].Journal of Geotechnical Engineering,1992,118(7):981995.
[27]沈恺伦,王立忠.天然软黏土屈服面及流动法则试验研究[J].土木工程学报,2009,42(4):119127.
SHEN Kailun,WANG Lizhong.Experimental Study on the Yield Surface and Flow Rule of Natural Clays[J].China Civil Engineering Journal,2009,42(4):119127.
[28]范庆来,栾茂田.各向异性软黏土地基上浅基础破坏包络面研究[J].岩石力学与工程学报,2010,29(11):23622369.
FAN Qinglai,LUAN Maotian.Study of Failure Envelope of Shallow Foundation on Anisotropic Soft Clay[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(11):23622369.
[29]严佳佳,李伯安,陈利明,等.原状软粘土各向异性及其对工程影响研究[J].西北地震学报,2011,33(增):155159.
YAN Jiajia,LI Boan,CHEN Liming,et al.Anisotropy of Undisturbed Soft Clay and Its Influence on Practical Engineering[J].Northwestern Seismological Journal,2011,33(S):155159.
[30]ZDRAVKOVIC L,POTTS D M,HIGHT D W.The Effect of Strength Anisotropy on the Behaviour of Embankments on Soft Ground[J].Geotechnique,2002,52(6):447457.
[31]张茂花,谢永利,刘保健.湿陷性黄土变形的各向异性及与浸水路径的无关性[J].中国公路学报,2006,19(4):1116.
ZHANG Maohua,XIE Yongli,LIU Baojian.Anisotropy of Collapsible Loess Deformation and Independence of Deformation and Soak Paths[J].China Journal of Highway and Transport,2006,19(4):1116.
[32]罗开泰,聂青,张树祎,等.人工制备初始应力各向异性结构性土方法探讨[J].岩土力学,2013,34(10):28152820,2834.
LUO Kaitai,NIE Qing,ZHANG Shuyi,et al.Investigation on Artificially Structured Soils with Initial Stressinduced Anisotropy[J].Rock and Soil Mechanics,2013,34(10):28152820,2834.
[33]雷华阳,姜岩,陆培毅.循环荷载作用下软粘土的强度判别标准试验[J].长安大学学报:自然科学版,2009,29(6):5458.
LEI Huayang,JIANG Yan,LU Peiyi.Test on Shear Strength Criterion of Soft Soil Under Cyclic Loading[J].Journal of Changan University:Natural Science Edition,2009,29(6):5458.
[28]范庆来,栾茂田.各向异性软黏土地基上浅基础破坏包络面研究[J].岩石力学与工程学报,2010,29(11):23622369.
FAN Qinglai,LUAN Maotian.Study of Failure Envelope of Shallow Foundation on Anisotropic Soft Clay[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(11):23622369.
[29]严佳佳,李伯安,陈利明,等.原状软粘土各向异性及其对工程影响研究[J].西北地震学报,2011,33(增):155159.
YAN Jiajia,LI Boan,CHEN Liming,et al.Anisotropy of Undisturbed Soft Clay and Its Influence on Practical Engineering[J].Northwestern Seismological Journal,2011,33(S):155159.
[30]ZDRAVKOVIC L,POTTS D M,HIGHT D W.The Effect of Strength Anisotropy on the Behaviour of Embankments on Soft Ground[J].Geotechnique,2002,52(6):447457.
[31]张茂花,谢永利,刘保健.湿陷性黄土变形的各向异性及与浸水路径的无关性[J].中国公路学报,2006,19(4):1116.
ZHANG Maohua,XIE Yongli,LIU Baojian.Anisotropy of Collapsible Loess Deformation and Independence of Deformation and Soak Paths[J].China Journal of Highway and Transport,2006,19(4):1116.
[32]罗开泰,聂青,张树祎,等.人工制备初始应力各向异性结构性土方法探讨[J].岩土力学,2013,34(10):28152820,2834.
LUO Kaitai,NIE Qing,ZHANG Shuyi,et al.Investigation on Artificially Structured Soils with Initial Stressinduced Anisotropy[J].Rock and Soil Mechanics,2013,34(10):28152820,2834.
[33]雷华阳,姜岩,陆培毅.循环荷载作用下软粘土的强度判别标准试验[J].长安大学学报:自然科学版,2009,29(6):5458.
LEI Huayang,JIANG Yan,LU Peiyi.Test on Shear Strength Criterion of Soft Soil Under Cyclic Loading[J].Journal of Changan University:Natural Science Edition,2009,29(6):5458.
[28]范庆来,栾茂田.各向异性软黏土地基上浅基础破坏包络面研究[J].岩石力学与工程学报,2010,29(11):23622369.
FAN Qinglai,LUAN Maotian.Study of Failure Envelope of Shallow Foundation on Anisotropic Soft Clay[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(11):23622369.
[29]严佳佳,李伯安,陈利明,等.原状软粘土各向异性及其对工程影响研究[J].西北地震学报,2011,33(增):155159.
YAN Jiajia,LI Boan,CHEN Liming,et al.Anisotropy of Undisturbed Soft Clay and Its Influence on Practical Engineering[J].Northwestern Seismological Journal,2011,33(S):155159.
[30]ZDRAVKOVIC L,POTTS D M,HIGHT D W.The Effect of Strength Anisotropy on the Behaviour of Embankments on Soft Ground[J].Geotechnique,2002,52(6):447457.
[31]张茂花,谢永利,刘保健.湿陷性黄土变形的各向异性及与浸水路径的无关性[J].中国公路学报,2006,19(4):1116.
ZHANG Maohua,XIE Yongli,LIU Baojian.Anisotropy of Collapsible Loess Deformation and Independence of Deformation and Soak Paths[J].China Journal of Highway and Transport,2006,19(4):1116.
[32]罗开泰,聂青,张树祎,等.人工制备初始应力各向异性结构性土方法探讨[J].岩土力学,2013,34(10):28152820,2834.
LUO Kaitai,NIE Qing,ZHANG Shuyi,et al.Investigation on Artificially Structured Soils with Initial Stressinduced Anisotropy[J].Rock and Soil Mechanics,2013,34(10):28152820,2834.
[33]雷华阳,姜岩,陆培毅.循环荷载作用下软粘土的强度判别标准试验[J].长安大学学报:自然科学版,2009,29(6):5458.
LEI Huayang,JIANG Yan,LU Peiyi.Test on Shear Strength Criterion of Soft Soil Under Cyclic Loading[J].Journal of Changan University:Natural Science Edition,2009,29(6):5458.