川西北塔公石英闪长岩地球化学特征和岩石成因
赖绍聪赵少伟
摘要:川西北塔公地区位于青藏高原东部,属于松潘—甘孜造山带的东南部边缘。塔公石英闪长岩侵位于晚三叠世地层中,岩体的KAr同位素年龄为134~136 Ma,形成于早白垩世。岩石SiO2质量分数为61.37%~62.25%,铝饱和指数为0.93~0.95,全碱质量分数为5.46%~5.77%,里特曼指数为1.62~1.74,样品属于亚碱性准铝质高钾钙碱系列石英闪长岩。岩石Mg#值较高,总体具有高Sr含量、低Nd含量的同位素地球化学特征。N(87Sr)/N(86Sr)值为0.712 589~0.713 009,初始N(87Sr)/N(86Sr)值为0.709 503~0.709 878,N(143Nd)/N(144Nd)值为0.512 135~0.512 196,εNd(t)值均为负(-86~-7.5),Nd模式年龄为1.33~1.41 Ga,Hf模式年龄为1.13~1.37 Ga。该岩体是早白垩世期间,川西北地区陆缘陆内造山环境下由松潘—甘孜造山带古老的下地壳镁铁质物质局部熔融形成的晚碰撞碰撞后非分异Ⅰ型花岗岩类。
关键词:石英闪长岩;早白垩世;地球化学;岩石成因;花岗岩;下地壳局部熔融;松潘—甘孜造山带;川西北
中图分类号:P588.12文献标志码:A
Geochemistry and Petrogenesis of Quartz Diorite in Tagong Area of Northwest Sichuan
LAI Shaocong1,2, ZHAO Shaowei1,2
(1. State Key Laboratory of Continental Dynamics, Northwest University, Xian 710069, Shaanxi, China;
2. Department of Geology, Northwest University, Xian 710069, Shaanxi, China)
Abstract: Tagong area of Northwest Sichuan is located in the east of QinghaiTibet Plateau, and belongs to the southeast margin of SongpanGanzi orogenic belt. The quartz diorites in Tagong area form in Early Cretaceous with KAr isotopic ages of 134136 Ma, and emplace into Late Triassic strata. Mass fractions of SiO2 are 61.37%62.25%, A/CNK values are 0.930.95, mass fractions of total alkali are 5.46%5.77%, Rittmann indexes are 1.621.74, so that the samples belong to subalkaline metaperaluminous highK calcalkaline series quartz diorites. The rocks have relative high Mg# values with the isotopic geochemical characteristics of high contents of Sr and low contents of Nd. N(87Sr)/N(86Sr) is 0.712 5890.713 009 with the initial N(87Sr)/N(86Sr) of 0.709 5030.709 878, N(143Nd)/N(144Nd) is 0.512 1350.512 196 with negative εNd(t) of -8.6-7.5; Nd and Hf model ages are 1.331.41 Ga and 1.131.37 Ga, respectively. The quartz diorites belong to undifferentiation Ⅰtype granitoids with late to postcollision caused by partial melting of ancient lower crust mafic materials at the continental marginintercontinental orogenic setting in Northwest Sichuan.
Key words: quartz diorite; Early Cretaceous; geochemistry; petrogenesis; granite; partial melting of lower crust; SongpanGanzi orogenic belt; Northwest Sichuan
0引言
松潘—甘孜造山带位于青藏高原东部,经历了由古特提斯到新特提斯的两个连续造山事件。许志琴等认为松潘—甘孜造山带是由北部劳亚板块(昆仑地体)、东部扬子板块及西部羌塘—昌都板块等3个不同方位的板块之间俯冲、碰撞及陆内汇聚的结果[13]。松潘—甘孜造山带北侧以阿尼玛卿印支缝合带与劳亚板块相隔,西侧以义敦岛弧带(包括甘孜—理塘印支蛇绿混杂岩带、金沙江东蛇绿混杂岩带及义敦岛弧岩浆岩带)与羌塘—昌都微板块比邻,东缘以龙门山—锦屏山与扬子克拉通相连。许志琴等研究认为,松潘—甘孜造山带内广泛发育巨厚的三叠纪复理石沉积[2]。由于经历了特提斯演化的复杂历史,所以区内构造形迹十分复杂,其主要变形过程发生在晚三叠世[13]。
松潘—甘孜造山带内广泛出露中生代花岗岩。这些花岗岩类侵位于三叠系地层中,它们是松潘—甘孜造山带构造发展过程中的一个重要组成部分。袁海华等对松潘—甘孜造山带内的花岗岩类进行了部分岩石地球化学和年代学研究[49],初步揭示了该区花岗岩类的时空分布和岩石地球化学特征。Roger等认为松潘—甘孜造山带造山过程中大型滑脱构造所产生的剪切热能可能是造成源区物质部分熔融形成花岗岩的主要原因[6];胡健民等则认为这些花岗岩的形成很可能与部分地幔热源的参与有关[9];同时,胡健民等在该区花岗岩中获得部分太古代的锆石,从而提出松潘—甘孜造山带可能存在古老的结晶基底[9]。很显然,对该区中生代花岗岩类的进一步深入研究,对于澄清松潘—甘孜造山带内中生代花岗岩类的形成时代、岩石学及地球化学特征、岩浆起源过程及岩浆源区性质等重要问题,以及探讨松潘—甘孜造山带基底性质及地质演化历史具有十分重要的科学意义。本文选择四川省康定县新都桥北侧出露的塔公石英闪长岩进行系统的岩石学、地球化学和SrNdPb同位素分析,并探讨其岩石成因和物质来源,为该区晚中生代岩浆作用过程及其地质构造演化历史提供了新的重要约束。
1地质背景及岩相学特征
松潘—甘孜造山带呈EW向延伸、东宽西窄的三角形形态(图1)。造山带内5~10 km厚的三叠系复理石沉积整合覆盖于4~6 km厚的震旦系—古生界地层之上。松潘—甘孜造山带东部的龙门山断裂带附近出露有前震旦系结晶基底。四川塔公地区属于松潘—甘孜造山带的东南部边缘(图1)。
塔公石英闪长岩位于四川省康定县新都桥以北31 km处的塔公乡南侧(图1);区内深大断裂纵贯全区,形成以NW—SE向为主体的断裂构造体系;区内中生代花岗岩类广泛出露,分布面积较大。这些花岗岩体的岩石类型主要为花岗岩、花岗闪长岩、正长花岗岩、二长花岗岩、英云闪长岩和石英闪长岩等;花岗质侵入岩体大多呈岩基、岩株或岩枝状产出。
塔公石英闪长岩侵位于上三叠统地层中。该区上三叠统地层主要为卡尼期—诺尼期的侏倭组、新都桥组、两河口组及雅江组。其岩性主要为一套巨厚的陆屑浊积复理石建造,古生物化石以瓣腮为主[10]。
塔公石英闪长岩呈浅灰色—暗灰色,新鲜无蚀变[图2(a)],呈中粒—中细粒半自形粒状结构、块状构造[图2(b)],主要组成矿物有斜长石(体积分数为40%~45%)、角闪石(25%~30%)、石英(10%~15%)、钾长石(约10%)、黑云母(5%~10%)等。副矿物(体积分数约3%)主要有榍石、磷灰石、锆石以及磁铁矿。斜长石粒径为2~3 mm,呈半自形长条板状,An牌号为35~40,镜下发育钠长石双晶[图2(c)、(d)],部分颗粒见有环带结构;碱性长石主要为条纹长石,自形程度不如斜长石;角闪石呈墨绿色、自形短柱状,常和黑云母相互交生;石英呈他形粒状分布在长石中。
2分析方法
分析测试的样品是在岩石薄片鉴定的基础上精心挑选出来的。首先经镜下观察,选取新鲜的、无后期交代脉体贯入的样品,先粗碎成直径为5~10 mm的小颗粒,经蒸馏水洗净和烘干之后,在碎样机内粉碎至200目(孔径0071 mm)待分析测试。
主量和微量元素测试在西北大学大陆动力学国家重点实验室完成。主量元素采用XRF法,微量元素用ICPMS测定。微量元素样品用HNO3和HF混合酸溶解2 d后,用VG Plasmaquad Excell ICPMS完成测试。对国际标准参考物质BHVO1(玄武岩)、BCR2(玄武岩)和AGV1(安山岩)的同步分析结果表明,微量元素分析的精度和准确度优于10%。详细的分析流程见文献[11]。SrNdPb同位素分析在西北大学大陆动力学国家重点实验室完成,Sr、Nd同位素分别采用AG50WX8(200~400 目,孔径为0038~0071 mm)、HDEHP和AG1X8(200~400 目,孔径为0038~0071 mm)离子交换树脂进行分离,同位素测试则在该实验室的多接收电感耦合等离子体质谱仪(MCICP MS, Nu Plasma HR, Nu Instruments, Wrexham, UK)上采用静态模式(Static Mode)进行[12]。
3结果分析
3.1主量元素
塔公石英闪长岩的主量元素分析结果列于表1。从表1可以看出:SiO2含量(质量分数,下同)为61.37%~62.25%,平均为6195%,在R1R2图解[图3(a)]中样品均位于二长闪长岩与英云闪长岩之间;K2O含量为3.22%~3.59%,Na2O含量为2.15%~2.27%,w(K2O)/w(Na2O)值为1.44~165,全碱含量(w(K2O)+w(Na2O))为5.46%~5.77%,里特曼指数为1.62~1.74,在SiO2K2O图解上样品位于高钾钙碱性系列岩石范围内[图3(b)];CaO含量为5.22%~5.61%,平均为5.41%;TiO2含量(0.60%~0.63%)不高,样品富铝(Al2O3含量为15.80%~16.30%,平均为16.09%),铝饱和指数(A/CNK)为0.93~0.95,样品属于准铝质系列[图3(c)];MgO含量为2.92%~3.15%,Mg#值较高,为47.8~48.3。综上所述,本区岩石为亚碱性准铝质高钾钙碱系列石英闪长岩类。
3.2微量元素
塔公石英闪长岩的微量元素分析结果列于表1。在稀土元素球粒陨石标准化配分模式(图4)中,岩石均显示为右倾负斜率轻稀土元素富集型。岩石稀土元素总含量为(130.45~156.40)×10-6,平均为146.11×10-6,wLREE/wHREE值较稳定,为214~2.84,平均为2.53,w(La)N/w(Yb)N值为566~841,平均为7.18,w(Ce)N/w(Yb)N值为4.66~6.39,平均为5.58,Eu异常为064~074,平均为0.68。岩石样品的稀土元素总含量较高,轻、重稀土元素分异强,Eu亏损明显,符合中酸性侵入岩类稀土元素化学成分演化趋势[1314]。
原始地幔标准化微量元素蛛网图(图5)显示石英闪长岩样品具有完全一致的配分型式。配分曲线均显示为右倾负斜率富集型配分型式,曲线的前半部分元素总体呈富集状态,而曲线后半部分相容元素富集度相对较低;元素Nb、Ta和Sr呈现轻微的
R1=4w(SiO2)11(w(Na2O)+w(K2O))-2(w(Fe2O3T)+w(TiO2));R2=6w(CaO)+2w(MgO)+w(Al2O3);图件引自文献[15]~[17]
图3塔公石英闪长岩R1R2图解、SiO2K2O图解和A/NKA/CNK图解
Fig.3Diagrams of R1R2, SiO2K2O and A/NKA/CNK for Quartz Diorite in Tagong Area
ws为样品含量;wc为样品球粒陨石含量;球粒陨石标准值引自文献[18]
图4塔公石英闪长岩球粒陨石标准化稀土元素配分模式
Fig.4Chondritenormalized REE Pattern of Quartz Diorite in Tagong Area
wp为原始地幔含量;原始地幔标准值引自文献[19]
图5塔公石英闪长岩原始地幔标准化微量元素蛛网图
Fig.5Primitive Mantlenormalized Trace Element Spider
Diagram of Quartz Diorite in Tagong Area
负异常,元素P和Ti负异常较明显,而元素Zr显示弱的正异常。
3.3SrNdPb同位素
塔公石英闪长岩3个样品的SrNdPb同位素分析结果列于表2。从表2可以看出:岩石总体具有较高Sr含量以及相对低Nd含量的同位素地球化学特征。岩石N(87Sr)/N(86Sr)值为0712 589~0713 009,平均为0.712 794,初始N(87Sr)/N(86Sr)值为0.709 503~0.709 878,εSr(t)值为73.29~7861,平均为75.98;N(143Nd)/N(144Nd) 值为0512 135~0.512 196,平均为0.512 164,εNd(t) 值为-8.6~-7.5。根据N(143Nd)/N(144Nd)N(87Sr)/N(86Sr)图解(图6),本区岩石的SrNd同位素组成
注:试验数据由西北大学大陆动力学国家重点实验室采用XRF和ICPMS测试;w(·)为元素或化合物含量;wtotal为主量元素总含量;wREE为稀土元素总含量;wLREE为轻稀土元素总含量;wHREE为重稀土元素总含量;w(·)N为元素含量球粒陨石标准化后的值;δ(·)为元素异常;Q为石英;An为钙长石;Di为透辉石;Or为正长石;Ab为钠长石;Hy为紫苏辉石;Mt为磁铁矿;Ilm为钛铁矿;Ap为磷灰石。
投影在高Sr含量和相对低Nd含量的区域。
塔公石英闪长岩N(206Pb)/N(204Pb) 值为18754 7~18.777 5,平均为18.7672,N(207Pb)/N(204Pb)值为15.687 5~15.690 6,平均为15.688 6,N(208Pb)/N(204Pb)值为39.025 4~39.105 0,平均为39.064 1。在Pb同位素组成图解(图7)中,本区岩石
表2塔公石英闪长岩SrNdPb同位素分析结果
Tab.2SrNdPb Isotopic Analysis Results of Quartz Diorite in Tagong Area
样品编号TG05TG06TG08
w(Pb)/10-621.723.022.3
w(Th)/10-612.312.713.1
w(U)/10-62.282.667.20
N(206Pb)/N(204Pb)18.769 5±0.000 318.754 7±0.000 518.777 5±0.000 4
N(207Pb)/N(204Pb)15.687 6±0.000 215.687 5±0.000 415.690 6±0.000 3
N(208Pb)/N(204Pb)39.105 0±0.000 639.025 4±0.001 139.061 9±0.000 9
Δ7/416.198 616.349 016.411 9
Δ8/478.567 572.396 873.290 3
w(Sr)/10-6275279279
w(Rb)/10-6155155155
n(87Rb)/n(86Sr)1.630 01.610 01.610 0
N(87Sr)/N(86Sr)0.713 009±0.000 0100.712 783±0.000 0060.712 589±0.000 007
ΔSr130.1127.8125.9
εSr(t)78.6176.0473.29
初始N(87Sr)/N(86Sr)0.709 8780.709 6970.709 503
w(Nd)/10-623.623.823.0
w(Sm)/10-65.095.004.90
n(147Sm)/n(144Nd)0.130 4000.127 0000.128 800
N(143Nd)/N(144Nd)0.512 196±0.000 0050.512 161±0.000 0050.512 135±0.000 005
εNd(t)-7.5-8.1-8.6
TDM(Nd)/Ma1.331.371.41
N(176Hf)/N(177Hf)0.282 618±0.000 0030.282 602±0.000 0040.282 511±0.000 003
TDM(Hf)/Ma1.131.171.37
注:N(·)/N(·)为同一元素同位素比值,N(·)为该元素的原子丰度;n(·)/n(·)为不同元素同位素比值,n(·)为元素的物质的量;εNd=[(N(143Nd)/N(144Nd))s/(N(143Nd)/N(144Nd))CHUR-1]×104,εSr=[(N(87Sr)/N(86Sr))i/(N(87Sr)/N(86Sr))CHUR-1]×104,Δ7/4 = [(N(207Pb)/N(204Pb))s- 0.108 4×(N(206Pb)/N(204Pb))s-13.491]×100,Δ8/4=[(N(208Pb)/N(204Pb))s-1.209×(N(206Pb)/N(204Pb))s- 15.627]×100,ΔSr=[(N(87Sr)/N(86Sr))s-0.7]×10 000,下标s表示样品的比值,下标CHUR表示球粒陨石均一源与样品同时的比值;εNd(t)为年龄t对应的εNd值;εSr(t)为年龄t对应的εSr值;(N(143Nd)/N(144Nd))CHUR 值为0.512 638;(N(87Sr)/N(86Sr))CHUR值为0.698 990;εNd(t)值和εSr(t) 值采用135 Ma做年龄校正;TDM(Nd)为Nd模式年龄;TDM(Hf)为Hf模式年龄;试验数据由西北大学大陆动力学国家重点实验室MCICPMS测试。
无论是在N(207Pb)/N(204Pb)N(206Pb)/N(204Pb)图解中,还是在N(208Pb)/N(204Pb)N(206Pb)/N(204Pb)图解中,均位于w(Th)/w(U)=4.0的北半球参考线(NHRL)之上,并在N(208Pb)/N(204Pb)N(206Pb)/N(204Pb)图解中具有与地球总成分(BSE)接近的同位素组成,而在N(207Pb)/N(204Pb)N(206Pb)/N(204Pb)图解中则处在下地壳的区域内。
图中百分比为部分熔融程度
图6N(143Nd)/N(144Nd)N(87Sr)/N(86Sr)图解和εNdN(87Sr)/N(86 Sr)图解
Fig.6Diagrams of N(143Nd)/N(144Nd)N(87Sr)/N(86 Sr) and εNdN(87Sr)/N(86 Sr)
EMI为Ⅰ型富集地幔;EMII为Ⅱ型富集地幔;HIMU为异常高n(238U)/n(204Pb)地幔;图件引自文献[22]
图7铅同位素组成图解
Fig.7Diagrams of Pb Isotopic Composition
4讨论
4.1岩石成因类型
在塔公石英闪长岩中普遍出现了Ⅰ型花岗岩的典型矿物学标志角闪石,岩石的副矿物组合中常见榍石、磁铁矿,而未见富铝矿物,从而明显区别于S型花岗岩[20]。本区岩石SiO2含量为6137%~6225%,A/CNK值为0.93~0.95,w(K2O)+w(Na2O)值为5.46%~5.77%,里特曼指数为162~1.74,样品属于准铝质系列,主量元素特征与 I型花岗岩较一致。王德滋等认为元素Rb和K有相似的地球化学性质[21],随着壳幔分离和陆壳的逐渐演化,Rb富集于成熟度高的地壳中;元素Sr和Ca有相似的地球化学行为,Sr富集于成熟度低、演化不充分的地壳中。因此,w(Rb)/w(Sr)值能灵敏地记录源区物质的性质。当w(Rb)/w(Sr)>0.9时,样品为S型花岗岩;当w(Rb)/w(Sr)<0.9时,样品为Ⅰ型花岗岩[21]。本区石英闪长岩w(Rb)/w(Sr)值为0.51~0.58,平均为0.55,样品明显属于Ⅰ型花岗岩。
地球化学特征表明,本区岩石Ga含量较低((18.5~18.8)×10-6),10 000w(Ga)/w(A1)值变化范围很小(218~221),且低于Whalen等建议的A型花岗岩下限(260)[23]。在以10 000w(Ga)/w(A1)值为基础的多种判别图解中,它们均投影在I、S和M型花岗岩区内[图8(a)~(c)]。在区分A型和分异I型花岗岩的(Na2O+K2O)/CaOZr+Nb+Ce+Y图解[图8(d)]中,本区岩石均位于非分异的钙碱性花岗岩区域。因此,塔公石英闪长岩应该属于非分异的I型花岗岩类。
4.2岩浆源区性质
Allegre等研究认为,岩浆在分离结晶作用中亲岩浆元素的丰度随着超亲岩浆元素的富集呈同步增长趋势[24]。因此,岩浆在分离结晶作用中w(La)/w(Sm)值基本保持为一常数。而在平衡部分熔融过程中,随着源区物质中元素La快速进入熔体,元素Sm也会在熔体中富集,但元素Sm的增长速度比元素La要慢。这是因为元素La在结晶相和熔体之间的分配系数比元素Sm要小得多。因此,La/SmLa图解[图9(a)]可以有效地判别一组相关岩石的成岩作用方式。从图9可以看出,随着元素La丰度的增高,本区石英闪长岩w(La)/w(Sm)值同步快速增高,充分说明它们为源区岩石局部熔融的产物。Zr/SmZr图解[图9(b)]反映了同样的规律。
在原始地幔标准化微量元素蛛网图(图5)中,本区岩石中元素Nb、Ta、Sr、P轻微亏损以及元素La、Zr、Hf、Nd等轻微正异常,说明斜长石可能作为熔融残留相或结晶分离相存在,即在熔融过程中斜长石相可能没有被完全耗尽[2528]。岩石中元素Zr的富集和元素Nb、Ta的亏损表明,源区岩石中可能以陆壳组分为主[2931]。元素Ti在岩浆岩中易形成独立矿物相,主要是钛铁氧化物类,而在造岩矿物中,元素Ti在链状硅酸盐中的含量最高,其次是层状硅酸盐,架状硅酸盐中元素Ti的含量较低[32],表明本区岩石中元素Ti的亏损可能受控于岩浆中副矿物钛铁氧化物的早期分离结晶[3341]
4.3岩石形成环境及地质意义
野外地质特征表明,塔公石英闪长岩侵位于晚三叠世地层中,其形成年龄应该晚于晚三叠世。根据《四川省区域地质志》[46],塔公岩体的KAr同位素年龄为134~136 Ma。因此,可以初步判定塔公石英闪长岩体形成于早白垩世。
在RbY+Nb图解[图11(a)]中,本区石英闪长岩数据点位于后碰撞花岗岩区域内。在Rb/30Hf3Ta图解[图11(b)]中,本区岩石主要位于火山弧花岗岩与晚碰撞碰撞后花岗岩的交界区域附近。结果表明,本区石英闪长岩应该形成于后碰撞或碰撞后的大地构造环境。
川西北地区属于松潘—甘孜造山带,在中生代主要遭受了华北陆块与扬子陆块碰撞后的板内汇聚作用;新生代又受到了印度板块与欧亚板块碰撞作用的影响。近年来的研究表明,川西北花岗岩形成于中生代陆内收缩的褶皱造山过程[13]。晚三叠世之后,川西北地区结束了主要沉积历史,进入陆缘陆内造山时期,大量中生代岩浆侵位,这些岩体主要侵位于三叠纪浅变质岩系中[6]。岩体多呈圆形或长条状产出,其中岩体形态呈圆形者多横跨不同方向的褶皱,沿褶皱叠加所形成的穹窿状背斜核部侵入,岩体边缘常常可以见到片麻状构造[7]。各岩体的侵位时代不大相同,自印支晚期至燕山晚期乃至喜山期皆有岩浆活动[8]。
塔公石英闪长岩形成于早白垩世期间(134~136 Ma),属于燕山晚期—喜山早期岩浆活动,说明松潘—甘孜造山带花岗质岩浆活动至少可以延续至喜山早期,印证了松潘—甘孜造山带的构造岩浆演化历史。塔公石英闪长岩属于亚碱性准铝质高钾钙碱系列,其偏高的Mg#值,尤其是高Sr含量、低Nd含量的同位素地球化学特征和
εNd(t)值(-86~-75),明显区别于幔源岩浆系列,表明其来源于下地壳镁铁质物质的局部熔融,没有幔源物质的明显参与。岩浆起源应该与松潘—甘孜造山带造山过程中大型滑脱构造所产生的剪切热能造成源区物质部分熔融密切相关,这与Roger等的研究结果[6]基本一致,说明塔公石英闪长岩是由于川西北地区在燕山晚期—喜山早期总体处于陆缘陆内造山的构造环境下,剪切热能造成下地壳镁铁质物质的局部熔融而形成的晚碰撞碰撞后I型花岗岩类。该区岩石的Nd和Hf模式年龄(113~141 Ga)与胡健民等在该区花岗岩中获得部分太古代锆石的事实[9]完全吻合,也与赵永久等在川西老君沟和孟通沟花岗岩研究中获得的Nd模式年龄(1.23~1.44 Ga)[49]相一致,均反映了松潘—甘孜造山带的基底性质不是洋壳,松潘—甘孜造山带不属于特提斯残留洋盆,而是具有类似于扬子板块的中元古代陆壳基底,因此,松潘—甘孜造山带结晶基底可能是古扬子板块的重要组成部分。
5结语
(1)川西北塔公闪长石SiO2含量为6137%~6225%,铝饱和指数为093~095,w(K2O)/w(Na2O)值为144~165,里特曼指数为162~174,样品属于亚碱性准铝质高钾钙碱系列石英闪长岩类。
(2)塔公石英闪长岩是早白垩世期间,川西北地区在陆缘陆内造山环境下,由松潘—甘孜造山带古老的下地壳镁铁质物质局部熔融形成的晚碰撞碰撞后非分异Ⅰ型花岗岩类。
(3)松潘—甘孜造山带的基底性质不是洋壳,其结晶基底可能是古扬子板块的重要组成部分。
参考文献:
References:
[1]许志琴,侯立玮,王大可,等.“西康式”褶皱及其变形机制:一种新的造山带褶皱类型[J].中国区域地质,1991(1):19.
XU Zhiqin,HOU Liwei,WANG Dake,et al.“Xikangtype” Folds and Their Deformation Mechanism:A New Fold Type in Orogenic Belts[J].Regional Geology of China,1991(1):19.
[2]许志琴,侯立玮,王宗秀,等.中国松潘—甘孜造山带的造山过程[M].北京:地质出版社,1992.
XU Zhiqin,HOU Liwei,WANG Zongxiu,et al.Orogenic Processes of the SongpanGanzi Orogenic Belt of China[M].Beijing:Geological Publishing House,1992.
[3]许志琴,张建新,徐惠芬,等.中国主要大陆山链韧性剪切带及动力学[M].北京:地质出版社,1997.
XU Zhiqin,ZHANG Jianxin,XU Huifen,et al.Shear Zone and Its Dynamics of the Main Continental Mountain Chain in China[M].Beijing:Geological Publishing House,1997.
[4]袁海华,张志兰,张平.龙门山老君沟花岗岩的隆升及冷却史[J].成都地质学院学报,1991,18(1):1722.
YUAN Haihua,ZHANG Zhilan,ZHANG Ping.The Uplifting and Cooling Histories of the Laojungou Granite in Longmen Mountains[J].Journal of Chengdu College of Geology,1991,18(1):1722.
[5]袁海华,张志兰.龙门山冲断带西侧印支—燕山期花岗岩类岩石年代学研究[M]∥罗志立.龙门山造山带的崛起和四川盆地的形成与演化.成都:成都科技大学出版社,1994:330337.
YUAN Haihua,ZHANG Zhilan.A Study of the Chronology of Granitoid Rocks in Indosinian,Yanshan Period at the West Longmen Mountains[M]∥LUO Zhili.Uplifting of Longmen Mountains and Formation and Evolution of Sichuan Basin.Chengdu: Chengdu University of Science and Technology Press,1994:330337.
[6]ROGER F,MALAVIEILLE J,LELOUP P H,et al.Timing of Granite Emplacement and Cooling in the SongpanGarze Fold Belt(Eastern Tibetan Plateau)with Tectonic Implications[J].Journal of Asian Earth Sciences,2004,22:465481.
[7]侯立玮,付小方.松潘—甘孜造山带东缘穹窿状变质地质体[M].成都:四川大学出版社,2002.
HOU Liwei,FU Xiaofang.The Dome Shaped Metamorphic Geologic Body in the Eastern Margin of the SongpanGanzi Orogen[M].Chengdu:Sichuan University Press,2002.
[8]王全伟,姚书振,骆耀南.川西北微细浸染型金矿床区域成矿动力学模式[J].四川地质学报,2004,24(1):49.
WANG Quanwei,YAO Shuzhen,LUO Yaonan.A Dynamic Model for Regional Metallogenesis of Finedisseminated Gold Deposits in Northwest Sichuan[J].Acta Geologica Sichuan,2004,24(1):49.
[9]胡健民,孟庆任,石玉若,等.松潘—甘孜地体内花岗岩锆石SHRIMP UPb定年及其构造意义[J].岩石学报,2005,21(3):867880.
HU Jianmin,MENG Qingren,SHI Yuruo,et al.SHRIMP UPb Dating of Zircons from Granitoid Bodies in the SongpanGanzi Terrance and Its Implications[J].Acta Petrologica Sinica,2005,21(3):867880.
[10]王晖,阮林森,郭建秋,等.四川雅江盆地三叠纪晚期沉积地球化学特征及其大地构造意义[J].西北地质,2012,45(2):8898.
WANG Hui,RUAN Linsen,GUO Jianqiu,et al.Late Triassic Sedimentary Geochemistry and Tectonic Significance in the Yajiang Basin,Sichuan[J].Northwestern Geology,2012,45(2):8898.
[11]刘晔,柳小明,胡兆初,等.ICPMS测定地质样品中37个元素的准确度和长期稳定性分析[J].岩石学报,2007,23(5):12031210.
LIU Ye,LIU Xiaoming,HU Zhaochu,et al.Evaluation of Accuracy and Longterm Stability of Determination of 37 Trace Elements in Geological Samples by ICPMS[J].Acta Petrologica Sinica,2007,23(5):12031210.
[12]YUAN H L,GAO S,LIU X M,et al.Accurate UPb Age and Trace Element Determinations of Zircon by Laser Ablationinductively Coupled Plasmamass Spectrometry[J].Geostandards and Geoanalytical Research,2004,28(3):353370.
[13]PEARCE J A.The Role of Subcontinental Lithosphere in Magma Genesis at Destructive Plate Margins[M]∥HAWKS W.Continental Basalts and Mantle Xenoliths.London:Nantwich Shiva Press,1983:230249.
[14]WILSON M.Igneous Petrogenesis[M].London:Unwin Hyman Press,1989.
[15]BARKER F.Trondhjemite:Definition,Environment and Hypotheses of Origin[J].Developments in Petrology,1979,6:112.
[16]ROLLINSON H R.Using Geological Data:Evalution,Presentation,Interpretation[M].London:Person Education Limited,1993.
[17]MANIAR P D,PICCOLI P M.Tectonic Discrimination of Granitoids[J].Geological Society of American Bulletin,1989,101(5):635643.
[18]SUN S S,MCDONOUGH W F.Chemical and Isotopic Systematics of Ocean Basins:Implications for Mantle Composition and Processes[J].Geological Society,London,Special Publications,1989,42:313345.
[19]WOOD D A,JORON J L,TREUIL M,et al.Elemental and Sr Isotope Variations in Basic Lavas from Iceland and the Surrounding Ocean Floor[J].Contributions to Mineralogy and Petrology,1979,70(3):319339.
[20]CHAPPELL B W,WHITE A J R.Two Contrasting Granite Types[J].Pacific Geology,1974,8:173174.
[21]王德滋,刘昌实,沈渭洲,等.桐庐I和相山S型两类碎斑熔岩对比[J].岩石学报,1993,9(1):4454.
WANG Dezi,LIU Changshi,SHEN Weizhou,et al.The Contrast Between Tonglu Itype and Xiangshan Stype Clastoporphyritic Lava[J].Acta Petrologica Sinica,1993,9(1):4454.
[22]HUGH R R.Using Geochemical Data[M].Singapore:Longman Singapore Publishers,1993.
[23]WHALEN J B,CURRIE K L,CHAPPELL B W.Atype Granites:Geochemical Characteristics,Discrimination and Petrogenesis[J].Contributions to Mineralogy and Petrology,1987,95:407419.
[24]ALLEGRE C J,MINSTER J F.Quantitative Models of Trace Element Behavior in Magmatic Processes[J].Earth and Planetary Science Letters,1978,38:125.
[25]PATINODOUCE A E,JOHNSTON A D.Phase Equilibria and Melt Productivity in the Pelitic System:Implications for the Origin of Peraluminous Granitoids and Aluminous Granulites[J].Contributions to Mineralogy and Petrology,1991,107(2):202218.
[26]PATINODOUCE A E,BEARD J S.Dehydrationmelting of Biotite Gneiss and Quartz Amphibolite from 3 to 15 kbar[J].Journal of Petrology,1995,36(3):707738.
[27]PATINODOUCE A E,HARRIS N.Experimental Constraints on Himalayan Anatexis[J].Journal of Petrology,1998,39(4):689710.
[28]PATINODOUCE A E.What Do Experiments Tell Us About the Relative Contributions of Crust and Mantle to the Origin of Granitic Magmas[J].Geological Society,London,Special Publications,1999,168:5575.
[29]GREEN T H,PEARSON N J.An Experimental Study of Nb and Ta Partitioning Between Tirich Minerals and Silicate Liquids at High Pressure and Temperature[J].Geochimica et Cosmochimica Acta,1987,51(1):5562.
[30]GREEN T H.Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crustmantle System[J].Chemical Geology,1995,120(3/4):347359.
[31]BARTH M G,MCDONOUGH W F,RUDNICK R L.Tracking the Budget of Nb and Ta in the Continental Crust[J].Chemical Geology,2000,165(3/4):197213.
[32]刘英俊,曹励明,李兆麟,等.元素地球化学[M].北京:科学出版社,1984.
LIU Yingjun,CAO Liming,LI Zhaolin,et al.Element Geochemistry[M].Beijing:Science Press,1984.
[33]赖绍聪,刘池阳,OREILLY S Y.北羌塘新第三纪高钾钙碱火山岩系的成因及其大陆动力学意义[J].中国科学:D辑,地球科学,2001,31(增):3442.
LAI Shaocong,LIU Chiyang,OREILLY S Y.Petrogenesis and Its Significance to Continental Dynamics of the Neogene Highpotassium Calcalkaline Volcanic Rock Association from North Qiangtang,Tibetan Plateau[J].Science in China:Series D,Earth Sciences,2001,31(S):3442.
[34]LAI S C,LIU C Y,YI H S.Geochemistry and Petrogenesis of Cenozoic Andesitedacite Association from the Hoh Xil Region,Tibetan Plateau[J].International Geology Review,2003,45(11):9981019.
[35]LAI S C,QIN J F,LI Y F.Partial Melting of Thickened Tibetan Crust:Geochemical Evidence from Cenozoic Adakitic Volcanic Rocks[J].International Geology Review,2007,49(4):357373.
[36]LAI S C,QIN J F,RODNEY G.Petrochemistry of Granulite Xenoliths from the Cenozoic Qiangtang Volcanic Field,Northern Tibetan Plateau:Implications for Lower Crust Composition and Genesis of the Volcanism[J].International Geology Review,2011,53(8):926945.
[37]赖绍聪,刘池阳.青藏高原北羌塘榴辉岩质下地壳及富集型地幔源区:来自新生代火山岩的岩石地球化学证据[J].岩石学报,2001,17(3):459468.
LAI Shaocong,LIU Chiyang.Enriched Upper Mantle and Eclogitic Lower Crust in North Qiangtang,QinghaiTibet Plateau:Petrological and Geochemical Evidence from the Cenozoic Volcanic Rocks[J].Acta Petrologica Sinica,2001,17(3):459468.
[38]赖绍聪,秦江锋,李永飞,等.青藏高原新生代火车头山碱性及钙碱性两套火山岩的地球化学特征及其物源讨论[J].岩石学报,2007,23(4):709718.
LAI Shaocong,QIN Jiangfeng,LI Yongfei,et al.Geochemistry and Petrogenesis of the Alkaline and Calcalkaline Series Cenozoic Volcanic Rocks from Huochetou Mountain,Tibetan Plateau[J].Acta Petrologica Sinica,2007,23(4):709718.
[39]赖绍聪,秦江锋,赵少伟,等.青藏高原东北缘柳坪新生代苦橄玄武岩地球化学及其大陆动力学意义[J].岩石学报,2014,30(2):361370.
LAI Shaocong,QIN Jiangfeng,ZHAO Shaowei,et al.Geochemistry and Its Continental Dynamic Implication of the Cenozoic Sodic Picritic Basalt from the Liuping Area,Northeastern Margin of the Tibetan Plateau[J].Acta Petrologica Sinica,2014,30(2):361370.
[40]赖绍聪,朱韧之.西秦岭竹林沟新生代碱性玄武岩地球化学及其成因[J].西北大学学报:自然科学版,2012,42(6):975984.
LAI Shaocong,ZHU Renzhi.Geochemistry and Petrogenesis of the Cenozoic Alkaline Basalt from the Zhulingou Area,Western Qinling Mountain[J].Journal of Northwest University:Natural Science Edition,2012,42(6):975984.
[41]赖绍聪,秦江锋,李学军,等.昌宁—孟连缝合带干龙塘—弄巴蛇绿岩地球化学及SrNdPb同位素组成研究[J].岩石学报,2010,26(11):31953205.
LAI Shaocong,QIN Jiangfeng,LI Xuejun,et al.Geochemistry and SrNdPb Isotopic Features of the GanlongtangNongba Ophiolite from the ChangningMenglian Suture Zone[J].Acta Petrologica Sinica,2010,26(11):31953205.
[42]DEPAOLO D J,DALEY E E.Neodymium Isotopes in Basalts of the Southwest Basin and Range and Lithospheric Thinning During Continental Extension[J].Chemical Geology,2000,169(1/2):157185.
[43]徐士进,王汝成,沈渭洲,等.松潘—甘孜造山带中晋宁期花岗岩的UPb,RbSr同位素定年及其大地构造意义[J].中国科学:D辑,地球科学,1996,26(1):5258.
XU Shijin,WANG Rucheng,SHEN Weizhou,et al.UPb,RbSr Isotopic Chronology of Jinning Granites in the SongpanGanzi Orogenic Belt and Its Tectonic Significance[J].Science in China:Series D,Earth Sciences,1996,26(1):5258.
[44]凌洪飞,徐士进,沈渭洲,等.格宗、东谷岩体Nd,Sr,Pb,O同位素特征及其与扬子板块边缘其他晋宁期花岗岩对比[J].岩石学报,1998,14(3):269277.
LING Hongfei,XU Shijin,SHEN Weizhou,et al.Nd,Sr,Pb and O Isotopic Compositions of Late Proterozoic Gezong and Donggugranites in the West Margin of Yangtze Plate and Comparison with Other Coeval Granitoids[J].Acta Petrologica Sinica,1998,14(3):269277.
[45]JAHN B M,WU F Y,LO C H,et al.Crustmantle Interaction Induced by Deep Subduction of the Continental Crust:Geochemical and SrNd Isotopic Evidence from Postcollisional Maficultramafic Intrusions of the Northern Dabie Complex,Central China[J].Chemical Geology,1999,157(1/2):119146.
[46]四川省地质矿产局.四川省区域地质志[M].北京:地质出版社,1991.
Sichuan Bureau of Geology and Mineral Resources.Regional Geology of Sichuan Province[M].Beijing:Geological Publishing House,1991.
[47]PEARCE J A.Sources and Setting of Granitic Rocks[J].Episodes,1996,19(4):120125.
[48]HARRIS N B W,PEARCE J A,TINDLE A G.Geochemical Characteristics of Collisionzone Magmatism[J].Geological Society,London,Special Publication,1986,19:6781.
[49]赵永久,袁超,周美夫,等.川西老君沟和孟通沟花岗岩的地球化学特征、成因机制及对松潘—甘孜地体基底性质的约束[J].岩石学报,2007,23(5):9951006.
ZHAO Yongjiu,YUAN Chao,ZHOU Meifu,et al.Geochemistry and Petrogenesis of Laojungou and Mengtonggou Granites in Western Sichuan,China:Constraints on the Nature of SongpanGanzi Basement[J].Acta Petrologica Sinica,2007,23(5):9951006.
摘要:川西北塔公地区位于青藏高原东部,属于松潘—甘孜造山带的东南部边缘。塔公石英闪长岩侵位于晚三叠世地层中,岩体的KAr同位素年龄为134~136 Ma,形成于早白垩世。岩石SiO2质量分数为61.37%~62.25%,铝饱和指数为0.93~0.95,全碱质量分数为5.46%~5.77%,里特曼指数为1.62~1.74,样品属于亚碱性准铝质高钾钙碱系列石英闪长岩。岩石Mg#值较高,总体具有高Sr含量、低Nd含量的同位素地球化学特征。N(87Sr)/N(86Sr)值为0.712 589~0.713 009,初始N(87Sr)/N(86Sr)值为0.709 503~0.709 878,N(143Nd)/N(144Nd)值为0.512 135~0.512 196,εNd(t)值均为负(-86~-7.5),Nd模式年龄为1.33~1.41 Ga,Hf模式年龄为1.13~1.37 Ga。该岩体是早白垩世期间,川西北地区陆缘陆内造山环境下由松潘—甘孜造山带古老的下地壳镁铁质物质局部熔融形成的晚碰撞碰撞后非分异Ⅰ型花岗岩类。
关键词:石英闪长岩;早白垩世;地球化学;岩石成因;花岗岩;下地壳局部熔融;松潘—甘孜造山带;川西北
中图分类号:P588.12文献标志码:A
Geochemistry and Petrogenesis of Quartz Diorite in Tagong Area of Northwest Sichuan
LAI Shaocong1,2, ZHAO Shaowei1,2
(1. State Key Laboratory of Continental Dynamics, Northwest University, Xian 710069, Shaanxi, China;
2. Department of Geology, Northwest University, Xian 710069, Shaanxi, China)
Abstract: Tagong area of Northwest Sichuan is located in the east of QinghaiTibet Plateau, and belongs to the southeast margin of SongpanGanzi orogenic belt. The quartz diorites in Tagong area form in Early Cretaceous with KAr isotopic ages of 134136 Ma, and emplace into Late Triassic strata. Mass fractions of SiO2 are 61.37%62.25%, A/CNK values are 0.930.95, mass fractions of total alkali are 5.46%5.77%, Rittmann indexes are 1.621.74, so that the samples belong to subalkaline metaperaluminous highK calcalkaline series quartz diorites. The rocks have relative high Mg# values with the isotopic geochemical characteristics of high contents of Sr and low contents of Nd. N(87Sr)/N(86Sr) is 0.712 5890.713 009 with the initial N(87Sr)/N(86Sr) of 0.709 5030.709 878, N(143Nd)/N(144Nd) is 0.512 1350.512 196 with negative εNd(t) of -8.6-7.5; Nd and Hf model ages are 1.331.41 Ga and 1.131.37 Ga, respectively. The quartz diorites belong to undifferentiation Ⅰtype granitoids with late to postcollision caused by partial melting of ancient lower crust mafic materials at the continental marginintercontinental orogenic setting in Northwest Sichuan.
Key words: quartz diorite; Early Cretaceous; geochemistry; petrogenesis; granite; partial melting of lower crust; SongpanGanzi orogenic belt; Northwest Sichuan
0引言
松潘—甘孜造山带位于青藏高原东部,经历了由古特提斯到新特提斯的两个连续造山事件。许志琴等认为松潘—甘孜造山带是由北部劳亚板块(昆仑地体)、东部扬子板块及西部羌塘—昌都板块等3个不同方位的板块之间俯冲、碰撞及陆内汇聚的结果[13]。松潘—甘孜造山带北侧以阿尼玛卿印支缝合带与劳亚板块相隔,西侧以义敦岛弧带(包括甘孜—理塘印支蛇绿混杂岩带、金沙江东蛇绿混杂岩带及义敦岛弧岩浆岩带)与羌塘—昌都微板块比邻,东缘以龙门山—锦屏山与扬子克拉通相连。许志琴等研究认为,松潘—甘孜造山带内广泛发育巨厚的三叠纪复理石沉积[2]。由于经历了特提斯演化的复杂历史,所以区内构造形迹十分复杂,其主要变形过程发生在晚三叠世[13]。
松潘—甘孜造山带内广泛出露中生代花岗岩。这些花岗岩类侵位于三叠系地层中,它们是松潘—甘孜造山带构造发展过程中的一个重要组成部分。袁海华等对松潘—甘孜造山带内的花岗岩类进行了部分岩石地球化学和年代学研究[49],初步揭示了该区花岗岩类的时空分布和岩石地球化学特征。Roger等认为松潘—甘孜造山带造山过程中大型滑脱构造所产生的剪切热能可能是造成源区物质部分熔融形成花岗岩的主要原因[6];胡健民等则认为这些花岗岩的形成很可能与部分地幔热源的参与有关[9];同时,胡健民等在该区花岗岩中获得部分太古代的锆石,从而提出松潘—甘孜造山带可能存在古老的结晶基底[9]。很显然,对该区中生代花岗岩类的进一步深入研究,对于澄清松潘—甘孜造山带内中生代花岗岩类的形成时代、岩石学及地球化学特征、岩浆起源过程及岩浆源区性质等重要问题,以及探讨松潘—甘孜造山带基底性质及地质演化历史具有十分重要的科学意义。本文选择四川省康定县新都桥北侧出露的塔公石英闪长岩进行系统的岩石学、地球化学和SrNdPb同位素分析,并探讨其岩石成因和物质来源,为该区晚中生代岩浆作用过程及其地质构造演化历史提供了新的重要约束。
1地质背景及岩相学特征
松潘—甘孜造山带呈EW向延伸、东宽西窄的三角形形态(图1)。造山带内5~10 km厚的三叠系复理石沉积整合覆盖于4~6 km厚的震旦系—古生界地层之上。松潘—甘孜造山带东部的龙门山断裂带附近出露有前震旦系结晶基底。四川塔公地区属于松潘—甘孜造山带的东南部边缘(图1)。
塔公石英闪长岩位于四川省康定县新都桥以北31 km处的塔公乡南侧(图1);区内深大断裂纵贯全区,形成以NW—SE向为主体的断裂构造体系;区内中生代花岗岩类广泛出露,分布面积较大。这些花岗岩体的岩石类型主要为花岗岩、花岗闪长岩、正长花岗岩、二长花岗岩、英云闪长岩和石英闪长岩等;花岗质侵入岩体大多呈岩基、岩株或岩枝状产出。
塔公石英闪长岩侵位于上三叠统地层中。该区上三叠统地层主要为卡尼期—诺尼期的侏倭组、新都桥组、两河口组及雅江组。其岩性主要为一套巨厚的陆屑浊积复理石建造,古生物化石以瓣腮为主[10]。
塔公石英闪长岩呈浅灰色—暗灰色,新鲜无蚀变[图2(a)],呈中粒—中细粒半自形粒状结构、块状构造[图2(b)],主要组成矿物有斜长石(体积分数为40%~45%)、角闪石(25%~30%)、石英(10%~15%)、钾长石(约10%)、黑云母(5%~10%)等。副矿物(体积分数约3%)主要有榍石、磷灰石、锆石以及磁铁矿。斜长石粒径为2~3 mm,呈半自形长条板状,An牌号为35~40,镜下发育钠长石双晶[图2(c)、(d)],部分颗粒见有环带结构;碱性长石主要为条纹长石,自形程度不如斜长石;角闪石呈墨绿色、自形短柱状,常和黑云母相互交生;石英呈他形粒状分布在长石中。
2分析方法
分析测试的样品是在岩石薄片鉴定的基础上精心挑选出来的。首先经镜下观察,选取新鲜的、无后期交代脉体贯入的样品,先粗碎成直径为5~10 mm的小颗粒,经蒸馏水洗净和烘干之后,在碎样机内粉碎至200目(孔径0071 mm)待分析测试。
主量和微量元素测试在西北大学大陆动力学国家重点实验室完成。主量元素采用XRF法,微量元素用ICPMS测定。微量元素样品用HNO3和HF混合酸溶解2 d后,用VG Plasmaquad Excell ICPMS完成测试。对国际标准参考物质BHVO1(玄武岩)、BCR2(玄武岩)和AGV1(安山岩)的同步分析结果表明,微量元素分析的精度和准确度优于10%。详细的分析流程见文献[11]。SrNdPb同位素分析在西北大学大陆动力学国家重点实验室完成,Sr、Nd同位素分别采用AG50WX8(200~400 目,孔径为0038~0071 mm)、HDEHP和AG1X8(200~400 目,孔径为0038~0071 mm)离子交换树脂进行分离,同位素测试则在该实验室的多接收电感耦合等离子体质谱仪(MCICP MS, Nu Plasma HR, Nu Instruments, Wrexham, UK)上采用静态模式(Static Mode)进行[12]。
3结果分析
3.1主量元素
塔公石英闪长岩的主量元素分析结果列于表1。从表1可以看出:SiO2含量(质量分数,下同)为61.37%~62.25%,平均为6195%,在R1R2图解[图3(a)]中样品均位于二长闪长岩与英云闪长岩之间;K2O含量为3.22%~3.59%,Na2O含量为2.15%~2.27%,w(K2O)/w(Na2O)值为1.44~165,全碱含量(w(K2O)+w(Na2O))为5.46%~5.77%,里特曼指数为1.62~1.74,在SiO2K2O图解上样品位于高钾钙碱性系列岩石范围内[图3(b)];CaO含量为5.22%~5.61%,平均为5.41%;TiO2含量(0.60%~0.63%)不高,样品富铝(Al2O3含量为15.80%~16.30%,平均为16.09%),铝饱和指数(A/CNK)为0.93~0.95,样品属于准铝质系列[图3(c)];MgO含量为2.92%~3.15%,Mg#值较高,为47.8~48.3。综上所述,本区岩石为亚碱性准铝质高钾钙碱系列石英闪长岩类。
3.2微量元素
塔公石英闪长岩的微量元素分析结果列于表1。在稀土元素球粒陨石标准化配分模式(图4)中,岩石均显示为右倾负斜率轻稀土元素富集型。岩石稀土元素总含量为(130.45~156.40)×10-6,平均为146.11×10-6,wLREE/wHREE值较稳定,为214~2.84,平均为2.53,w(La)N/w(Yb)N值为566~841,平均为7.18,w(Ce)N/w(Yb)N值为4.66~6.39,平均为5.58,Eu异常为064~074,平均为0.68。岩石样品的稀土元素总含量较高,轻、重稀土元素分异强,Eu亏损明显,符合中酸性侵入岩类稀土元素化学成分演化趋势[1314]。
原始地幔标准化微量元素蛛网图(图5)显示石英闪长岩样品具有完全一致的配分型式。配分曲线均显示为右倾负斜率富集型配分型式,曲线的前半部分元素总体呈富集状态,而曲线后半部分相容元素富集度相对较低;元素Nb、Ta和Sr呈现轻微的
R1=4w(SiO2)11(w(Na2O)+w(K2O))-2(w(Fe2O3T)+w(TiO2));R2=6w(CaO)+2w(MgO)+w(Al2O3);图件引自文献[15]~[17]
图3塔公石英闪长岩R1R2图解、SiO2K2O图解和A/NKA/CNK图解
Fig.3Diagrams of R1R2, SiO2K2O and A/NKA/CNK for Quartz Diorite in Tagong Area
ws为样品含量;wc为样品球粒陨石含量;球粒陨石标准值引自文献[18]
图4塔公石英闪长岩球粒陨石标准化稀土元素配分模式
Fig.4Chondritenormalized REE Pattern of Quartz Diorite in Tagong Area
wp为原始地幔含量;原始地幔标准值引自文献[19]
图5塔公石英闪长岩原始地幔标准化微量元素蛛网图
Fig.5Primitive Mantlenormalized Trace Element Spider
Diagram of Quartz Diorite in Tagong Area
负异常,元素P和Ti负异常较明显,而元素Zr显示弱的正异常。
3.3SrNdPb同位素
塔公石英闪长岩3个样品的SrNdPb同位素分析结果列于表2。从表2可以看出:岩石总体具有较高Sr含量以及相对低Nd含量的同位素地球化学特征。岩石N(87Sr)/N(86Sr)值为0712 589~0713 009,平均为0.712 794,初始N(87Sr)/N(86Sr)值为0.709 503~0.709 878,εSr(t)值为73.29~7861,平均为75.98;N(143Nd)/N(144Nd) 值为0512 135~0.512 196,平均为0.512 164,εNd(t) 值为-8.6~-7.5。根据N(143Nd)/N(144Nd)N(87Sr)/N(86Sr)图解(图6),本区岩石的SrNd同位素组成
注:试验数据由西北大学大陆动力学国家重点实验室采用XRF和ICPMS测试;w(·)为元素或化合物含量;wtotal为主量元素总含量;wREE为稀土元素总含量;wLREE为轻稀土元素总含量;wHREE为重稀土元素总含量;w(·)N为元素含量球粒陨石标准化后的值;δ(·)为元素异常;Q为石英;An为钙长石;Di为透辉石;Or为正长石;Ab为钠长石;Hy为紫苏辉石;Mt为磁铁矿;Ilm为钛铁矿;Ap为磷灰石。
投影在高Sr含量和相对低Nd含量的区域。
塔公石英闪长岩N(206Pb)/N(204Pb) 值为18754 7~18.777 5,平均为18.7672,N(207Pb)/N(204Pb)值为15.687 5~15.690 6,平均为15.688 6,N(208Pb)/N(204Pb)值为39.025 4~39.105 0,平均为39.064 1。在Pb同位素组成图解(图7)中,本区岩石
表2塔公石英闪长岩SrNdPb同位素分析结果
Tab.2SrNdPb Isotopic Analysis Results of Quartz Diorite in Tagong Area
样品编号TG05TG06TG08
w(Pb)/10-621.723.022.3
w(Th)/10-612.312.713.1
w(U)/10-62.282.667.20
N(206Pb)/N(204Pb)18.769 5±0.000 318.754 7±0.000 518.777 5±0.000 4
N(207Pb)/N(204Pb)15.687 6±0.000 215.687 5±0.000 415.690 6±0.000 3
N(208Pb)/N(204Pb)39.105 0±0.000 639.025 4±0.001 139.061 9±0.000 9
Δ7/416.198 616.349 016.411 9
Δ8/478.567 572.396 873.290 3
w(Sr)/10-6275279279
w(Rb)/10-6155155155
n(87Rb)/n(86Sr)1.630 01.610 01.610 0
N(87Sr)/N(86Sr)0.713 009±0.000 0100.712 783±0.000 0060.712 589±0.000 007
ΔSr130.1127.8125.9
εSr(t)78.6176.0473.29
初始N(87Sr)/N(86Sr)0.709 8780.709 6970.709 503
w(Nd)/10-623.623.823.0
w(Sm)/10-65.095.004.90
n(147Sm)/n(144Nd)0.130 4000.127 0000.128 800
N(143Nd)/N(144Nd)0.512 196±0.000 0050.512 161±0.000 0050.512 135±0.000 005
εNd(t)-7.5-8.1-8.6
TDM(Nd)/Ma1.331.371.41
N(176Hf)/N(177Hf)0.282 618±0.000 0030.282 602±0.000 0040.282 511±0.000 003
TDM(Hf)/Ma1.131.171.37
注:N(·)/N(·)为同一元素同位素比值,N(·)为该元素的原子丰度;n(·)/n(·)为不同元素同位素比值,n(·)为元素的物质的量;εNd=[(N(143Nd)/N(144Nd))s/(N(143Nd)/N(144Nd))CHUR-1]×104,εSr=[(N(87Sr)/N(86Sr))i/(N(87Sr)/N(86Sr))CHUR-1]×104,Δ7/4 = [(N(207Pb)/N(204Pb))s- 0.108 4×(N(206Pb)/N(204Pb))s-13.491]×100,Δ8/4=[(N(208Pb)/N(204Pb))s-1.209×(N(206Pb)/N(204Pb))s- 15.627]×100,ΔSr=[(N(87Sr)/N(86Sr))s-0.7]×10 000,下标s表示样品的比值,下标CHUR表示球粒陨石均一源与样品同时的比值;εNd(t)为年龄t对应的εNd值;εSr(t)为年龄t对应的εSr值;(N(143Nd)/N(144Nd))CHUR 值为0.512 638;(N(87Sr)/N(86Sr))CHUR值为0.698 990;εNd(t)值和εSr(t) 值采用135 Ma做年龄校正;TDM(Nd)为Nd模式年龄;TDM(Hf)为Hf模式年龄;试验数据由西北大学大陆动力学国家重点实验室MCICPMS测试。
无论是在N(207Pb)/N(204Pb)N(206Pb)/N(204Pb)图解中,还是在N(208Pb)/N(204Pb)N(206Pb)/N(204Pb)图解中,均位于w(Th)/w(U)=4.0的北半球参考线(NHRL)之上,并在N(208Pb)/N(204Pb)N(206Pb)/N(204Pb)图解中具有与地球总成分(BSE)接近的同位素组成,而在N(207Pb)/N(204Pb)N(206Pb)/N(204Pb)图解中则处在下地壳的区域内。
图中百分比为部分熔融程度
图6N(143Nd)/N(144Nd)N(87Sr)/N(86Sr)图解和εNdN(87Sr)/N(86 Sr)图解
Fig.6Diagrams of N(143Nd)/N(144Nd)N(87Sr)/N(86 Sr) and εNdN(87Sr)/N(86 Sr)
EMI为Ⅰ型富集地幔;EMII为Ⅱ型富集地幔;HIMU为异常高n(238U)/n(204Pb)地幔;图件引自文献[22]
图7铅同位素组成图解
Fig.7Diagrams of Pb Isotopic Composition
4讨论
4.1岩石成因类型
在塔公石英闪长岩中普遍出现了Ⅰ型花岗岩的典型矿物学标志角闪石,岩石的副矿物组合中常见榍石、磁铁矿,而未见富铝矿物,从而明显区别于S型花岗岩[20]。本区岩石SiO2含量为6137%~6225%,A/CNK值为0.93~0.95,w(K2O)+w(Na2O)值为5.46%~5.77%,里特曼指数为162~1.74,样品属于准铝质系列,主量元素特征与 I型花岗岩较一致。王德滋等认为元素Rb和K有相似的地球化学性质[21],随着壳幔分离和陆壳的逐渐演化,Rb富集于成熟度高的地壳中;元素Sr和Ca有相似的地球化学行为,Sr富集于成熟度低、演化不充分的地壳中。因此,w(Rb)/w(Sr)值能灵敏地记录源区物质的性质。当w(Rb)/w(Sr)>0.9时,样品为S型花岗岩;当w(Rb)/w(Sr)<0.9时,样品为Ⅰ型花岗岩[21]。本区石英闪长岩w(Rb)/w(Sr)值为0.51~0.58,平均为0.55,样品明显属于Ⅰ型花岗岩。
地球化学特征表明,本区岩石Ga含量较低((18.5~18.8)×10-6),10 000w(Ga)/w(A1)值变化范围很小(218~221),且低于Whalen等建议的A型花岗岩下限(260)[23]。在以10 000w(Ga)/w(A1)值为基础的多种判别图解中,它们均投影在I、S和M型花岗岩区内[图8(a)~(c)]。在区分A型和分异I型花岗岩的(Na2O+K2O)/CaOZr+Nb+Ce+Y图解[图8(d)]中,本区岩石均位于非分异的钙碱性花岗岩区域。因此,塔公石英闪长岩应该属于非分异的I型花岗岩类。
4.2岩浆源区性质
Allegre等研究认为,岩浆在分离结晶作用中亲岩浆元素的丰度随着超亲岩浆元素的富集呈同步增长趋势[24]。因此,岩浆在分离结晶作用中w(La)/w(Sm)值基本保持为一常数。而在平衡部分熔融过程中,随着源区物质中元素La快速进入熔体,元素Sm也会在熔体中富集,但元素Sm的增长速度比元素La要慢。这是因为元素La在结晶相和熔体之间的分配系数比元素Sm要小得多。因此,La/SmLa图解[图9(a)]可以有效地判别一组相关岩石的成岩作用方式。从图9可以看出,随着元素La丰度的增高,本区石英闪长岩w(La)/w(Sm)值同步快速增高,充分说明它们为源区岩石局部熔融的产物。Zr/SmZr图解[图9(b)]反映了同样的规律。
在原始地幔标准化微量元素蛛网图(图5)中,本区岩石中元素Nb、Ta、Sr、P轻微亏损以及元素La、Zr、Hf、Nd等轻微正异常,说明斜长石可能作为熔融残留相或结晶分离相存在,即在熔融过程中斜长石相可能没有被完全耗尽[2528]。岩石中元素Zr的富集和元素Nb、Ta的亏损表明,源区岩石中可能以陆壳组分为主[2931]。元素Ti在岩浆岩中易形成独立矿物相,主要是钛铁氧化物类,而在造岩矿物中,元素Ti在链状硅酸盐中的含量最高,其次是层状硅酸盐,架状硅酸盐中元素Ti的含量较低[32],表明本区岩石中元素Ti的亏损可能受控于岩浆中副矿物钛铁氧化物的早期分离结晶[3341]
4.3岩石形成环境及地质意义
野外地质特征表明,塔公石英闪长岩侵位于晚三叠世地层中,其形成年龄应该晚于晚三叠世。根据《四川省区域地质志》[46],塔公岩体的KAr同位素年龄为134~136 Ma。因此,可以初步判定塔公石英闪长岩体形成于早白垩世。
在RbY+Nb图解[图11(a)]中,本区石英闪长岩数据点位于后碰撞花岗岩区域内。在Rb/30Hf3Ta图解[图11(b)]中,本区岩石主要位于火山弧花岗岩与晚碰撞碰撞后花岗岩的交界区域附近。结果表明,本区石英闪长岩应该形成于后碰撞或碰撞后的大地构造环境。
川西北地区属于松潘—甘孜造山带,在中生代主要遭受了华北陆块与扬子陆块碰撞后的板内汇聚作用;新生代又受到了印度板块与欧亚板块碰撞作用的影响。近年来的研究表明,川西北花岗岩形成于中生代陆内收缩的褶皱造山过程[13]。晚三叠世之后,川西北地区结束了主要沉积历史,进入陆缘陆内造山时期,大量中生代岩浆侵位,这些岩体主要侵位于三叠纪浅变质岩系中[6]。岩体多呈圆形或长条状产出,其中岩体形态呈圆形者多横跨不同方向的褶皱,沿褶皱叠加所形成的穹窿状背斜核部侵入,岩体边缘常常可以见到片麻状构造[7]。各岩体的侵位时代不大相同,自印支晚期至燕山晚期乃至喜山期皆有岩浆活动[8]。
塔公石英闪长岩形成于早白垩世期间(134~136 Ma),属于燕山晚期—喜山早期岩浆活动,说明松潘—甘孜造山带花岗质岩浆活动至少可以延续至喜山早期,印证了松潘—甘孜造山带的构造岩浆演化历史。塔公石英闪长岩属于亚碱性准铝质高钾钙碱系列,其偏高的Mg#值,尤其是高Sr含量、低Nd含量的同位素地球化学特征和
εNd(t)值(-86~-75),明显区别于幔源岩浆系列,表明其来源于下地壳镁铁质物质的局部熔融,没有幔源物质的明显参与。岩浆起源应该与松潘—甘孜造山带造山过程中大型滑脱构造所产生的剪切热能造成源区物质部分熔融密切相关,这与Roger等的研究结果[6]基本一致,说明塔公石英闪长岩是由于川西北地区在燕山晚期—喜山早期总体处于陆缘陆内造山的构造环境下,剪切热能造成下地壳镁铁质物质的局部熔融而形成的晚碰撞碰撞后I型花岗岩类。该区岩石的Nd和Hf模式年龄(113~141 Ga)与胡健民等在该区花岗岩中获得部分太古代锆石的事实[9]完全吻合,也与赵永久等在川西老君沟和孟通沟花岗岩研究中获得的Nd模式年龄(1.23~1.44 Ga)[49]相一致,均反映了松潘—甘孜造山带的基底性质不是洋壳,松潘—甘孜造山带不属于特提斯残留洋盆,而是具有类似于扬子板块的中元古代陆壳基底,因此,松潘—甘孜造山带结晶基底可能是古扬子板块的重要组成部分。
5结语
(1)川西北塔公闪长石SiO2含量为6137%~6225%,铝饱和指数为093~095,w(K2O)/w(Na2O)值为144~165,里特曼指数为162~174,样品属于亚碱性准铝质高钾钙碱系列石英闪长岩类。
(2)塔公石英闪长岩是早白垩世期间,川西北地区在陆缘陆内造山环境下,由松潘—甘孜造山带古老的下地壳镁铁质物质局部熔融形成的晚碰撞碰撞后非分异Ⅰ型花岗岩类。
(3)松潘—甘孜造山带的基底性质不是洋壳,其结晶基底可能是古扬子板块的重要组成部分。
参考文献:
References:
[1]许志琴,侯立玮,王大可,等.“西康式”褶皱及其变形机制:一种新的造山带褶皱类型[J].中国区域地质,1991(1):19.
XU Zhiqin,HOU Liwei,WANG Dake,et al.“Xikangtype” Folds and Their Deformation Mechanism:A New Fold Type in Orogenic Belts[J].Regional Geology of China,1991(1):19.
[2]许志琴,侯立玮,王宗秀,等.中国松潘—甘孜造山带的造山过程[M].北京:地质出版社,1992.
XU Zhiqin,HOU Liwei,WANG Zongxiu,et al.Orogenic Processes of the SongpanGanzi Orogenic Belt of China[M].Beijing:Geological Publishing House,1992.
[3]许志琴,张建新,徐惠芬,等.中国主要大陆山链韧性剪切带及动力学[M].北京:地质出版社,1997.
XU Zhiqin,ZHANG Jianxin,XU Huifen,et al.Shear Zone and Its Dynamics of the Main Continental Mountain Chain in China[M].Beijing:Geological Publishing House,1997.
[4]袁海华,张志兰,张平.龙门山老君沟花岗岩的隆升及冷却史[J].成都地质学院学报,1991,18(1):1722.
YUAN Haihua,ZHANG Zhilan,ZHANG Ping.The Uplifting and Cooling Histories of the Laojungou Granite in Longmen Mountains[J].Journal of Chengdu College of Geology,1991,18(1):1722.
[5]袁海华,张志兰.龙门山冲断带西侧印支—燕山期花岗岩类岩石年代学研究[M]∥罗志立.龙门山造山带的崛起和四川盆地的形成与演化.成都:成都科技大学出版社,1994:330337.
YUAN Haihua,ZHANG Zhilan.A Study of the Chronology of Granitoid Rocks in Indosinian,Yanshan Period at the West Longmen Mountains[M]∥LUO Zhili.Uplifting of Longmen Mountains and Formation and Evolution of Sichuan Basin.Chengdu: Chengdu University of Science and Technology Press,1994:330337.
[6]ROGER F,MALAVIEILLE J,LELOUP P H,et al.Timing of Granite Emplacement and Cooling in the SongpanGarze Fold Belt(Eastern Tibetan Plateau)with Tectonic Implications[J].Journal of Asian Earth Sciences,2004,22:465481.
[7]侯立玮,付小方.松潘—甘孜造山带东缘穹窿状变质地质体[M].成都:四川大学出版社,2002.
HOU Liwei,FU Xiaofang.The Dome Shaped Metamorphic Geologic Body in the Eastern Margin of the SongpanGanzi Orogen[M].Chengdu:Sichuan University Press,2002.
[8]王全伟,姚书振,骆耀南.川西北微细浸染型金矿床区域成矿动力学模式[J].四川地质学报,2004,24(1):49.
WANG Quanwei,YAO Shuzhen,LUO Yaonan.A Dynamic Model for Regional Metallogenesis of Finedisseminated Gold Deposits in Northwest Sichuan[J].Acta Geologica Sichuan,2004,24(1):49.
[9]胡健民,孟庆任,石玉若,等.松潘—甘孜地体内花岗岩锆石SHRIMP UPb定年及其构造意义[J].岩石学报,2005,21(3):867880.
HU Jianmin,MENG Qingren,SHI Yuruo,et al.SHRIMP UPb Dating of Zircons from Granitoid Bodies in the SongpanGanzi Terrance and Its Implications[J].Acta Petrologica Sinica,2005,21(3):867880.
[10]王晖,阮林森,郭建秋,等.四川雅江盆地三叠纪晚期沉积地球化学特征及其大地构造意义[J].西北地质,2012,45(2):8898.
WANG Hui,RUAN Linsen,GUO Jianqiu,et al.Late Triassic Sedimentary Geochemistry and Tectonic Significance in the Yajiang Basin,Sichuan[J].Northwestern Geology,2012,45(2):8898.
[11]刘晔,柳小明,胡兆初,等.ICPMS测定地质样品中37个元素的准确度和长期稳定性分析[J].岩石学报,2007,23(5):12031210.
LIU Ye,LIU Xiaoming,HU Zhaochu,et al.Evaluation of Accuracy and Longterm Stability of Determination of 37 Trace Elements in Geological Samples by ICPMS[J].Acta Petrologica Sinica,2007,23(5):12031210.
[12]YUAN H L,GAO S,LIU X M,et al.Accurate UPb Age and Trace Element Determinations of Zircon by Laser Ablationinductively Coupled Plasmamass Spectrometry[J].Geostandards and Geoanalytical Research,2004,28(3):353370.
[13]PEARCE J A.The Role of Subcontinental Lithosphere in Magma Genesis at Destructive Plate Margins[M]∥HAWKS W.Continental Basalts and Mantle Xenoliths.London:Nantwich Shiva Press,1983:230249.
[14]WILSON M.Igneous Petrogenesis[M].London:Unwin Hyman Press,1989.
[15]BARKER F.Trondhjemite:Definition,Environment and Hypotheses of Origin[J].Developments in Petrology,1979,6:112.
[16]ROLLINSON H R.Using Geological Data:Evalution,Presentation,Interpretation[M].London:Person Education Limited,1993.
[17]MANIAR P D,PICCOLI P M.Tectonic Discrimination of Granitoids[J].Geological Society of American Bulletin,1989,101(5):635643.
[18]SUN S S,MCDONOUGH W F.Chemical and Isotopic Systematics of Ocean Basins:Implications for Mantle Composition and Processes[J].Geological Society,London,Special Publications,1989,42:313345.
[19]WOOD D A,JORON J L,TREUIL M,et al.Elemental and Sr Isotope Variations in Basic Lavas from Iceland and the Surrounding Ocean Floor[J].Contributions to Mineralogy and Petrology,1979,70(3):319339.
[20]CHAPPELL B W,WHITE A J R.Two Contrasting Granite Types[J].Pacific Geology,1974,8:173174.
[21]王德滋,刘昌实,沈渭洲,等.桐庐I和相山S型两类碎斑熔岩对比[J].岩石学报,1993,9(1):4454.
WANG Dezi,LIU Changshi,SHEN Weizhou,et al.The Contrast Between Tonglu Itype and Xiangshan Stype Clastoporphyritic Lava[J].Acta Petrologica Sinica,1993,9(1):4454.
[22]HUGH R R.Using Geochemical Data[M].Singapore:Longman Singapore Publishers,1993.
[23]WHALEN J B,CURRIE K L,CHAPPELL B W.Atype Granites:Geochemical Characteristics,Discrimination and Petrogenesis[J].Contributions to Mineralogy and Petrology,1987,95:407419.
[24]ALLEGRE C J,MINSTER J F.Quantitative Models of Trace Element Behavior in Magmatic Processes[J].Earth and Planetary Science Letters,1978,38:125.
[25]PATINODOUCE A E,JOHNSTON A D.Phase Equilibria and Melt Productivity in the Pelitic System:Implications for the Origin of Peraluminous Granitoids and Aluminous Granulites[J].Contributions to Mineralogy and Petrology,1991,107(2):202218.
[26]PATINODOUCE A E,BEARD J S.Dehydrationmelting of Biotite Gneiss and Quartz Amphibolite from 3 to 15 kbar[J].Journal of Petrology,1995,36(3):707738.
[27]PATINODOUCE A E,HARRIS N.Experimental Constraints on Himalayan Anatexis[J].Journal of Petrology,1998,39(4):689710.
[28]PATINODOUCE A E.What Do Experiments Tell Us About the Relative Contributions of Crust and Mantle to the Origin of Granitic Magmas[J].Geological Society,London,Special Publications,1999,168:5575.
[29]GREEN T H,PEARSON N J.An Experimental Study of Nb and Ta Partitioning Between Tirich Minerals and Silicate Liquids at High Pressure and Temperature[J].Geochimica et Cosmochimica Acta,1987,51(1):5562.
[30]GREEN T H.Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crustmantle System[J].Chemical Geology,1995,120(3/4):347359.
[31]BARTH M G,MCDONOUGH W F,RUDNICK R L.Tracking the Budget of Nb and Ta in the Continental Crust[J].Chemical Geology,2000,165(3/4):197213.
[32]刘英俊,曹励明,李兆麟,等.元素地球化学[M].北京:科学出版社,1984.
LIU Yingjun,CAO Liming,LI Zhaolin,et al.Element Geochemistry[M].Beijing:Science Press,1984.
[33]赖绍聪,刘池阳,OREILLY S Y.北羌塘新第三纪高钾钙碱火山岩系的成因及其大陆动力学意义[J].中国科学:D辑,地球科学,2001,31(增):3442.
LAI Shaocong,LIU Chiyang,OREILLY S Y.Petrogenesis and Its Significance to Continental Dynamics of the Neogene Highpotassium Calcalkaline Volcanic Rock Association from North Qiangtang,Tibetan Plateau[J].Science in China:Series D,Earth Sciences,2001,31(S):3442.
[34]LAI S C,LIU C Y,YI H S.Geochemistry and Petrogenesis of Cenozoic Andesitedacite Association from the Hoh Xil Region,Tibetan Plateau[J].International Geology Review,2003,45(11):9981019.
[35]LAI S C,QIN J F,LI Y F.Partial Melting of Thickened Tibetan Crust:Geochemical Evidence from Cenozoic Adakitic Volcanic Rocks[J].International Geology Review,2007,49(4):357373.
[36]LAI S C,QIN J F,RODNEY G.Petrochemistry of Granulite Xenoliths from the Cenozoic Qiangtang Volcanic Field,Northern Tibetan Plateau:Implications for Lower Crust Composition and Genesis of the Volcanism[J].International Geology Review,2011,53(8):926945.
[37]赖绍聪,刘池阳.青藏高原北羌塘榴辉岩质下地壳及富集型地幔源区:来自新生代火山岩的岩石地球化学证据[J].岩石学报,2001,17(3):459468.
LAI Shaocong,LIU Chiyang.Enriched Upper Mantle and Eclogitic Lower Crust in North Qiangtang,QinghaiTibet Plateau:Petrological and Geochemical Evidence from the Cenozoic Volcanic Rocks[J].Acta Petrologica Sinica,2001,17(3):459468.
[38]赖绍聪,秦江锋,李永飞,等.青藏高原新生代火车头山碱性及钙碱性两套火山岩的地球化学特征及其物源讨论[J].岩石学报,2007,23(4):709718.
LAI Shaocong,QIN Jiangfeng,LI Yongfei,et al.Geochemistry and Petrogenesis of the Alkaline and Calcalkaline Series Cenozoic Volcanic Rocks from Huochetou Mountain,Tibetan Plateau[J].Acta Petrologica Sinica,2007,23(4):709718.
[39]赖绍聪,秦江锋,赵少伟,等.青藏高原东北缘柳坪新生代苦橄玄武岩地球化学及其大陆动力学意义[J].岩石学报,2014,30(2):361370.
LAI Shaocong,QIN Jiangfeng,ZHAO Shaowei,et al.Geochemistry and Its Continental Dynamic Implication of the Cenozoic Sodic Picritic Basalt from the Liuping Area,Northeastern Margin of the Tibetan Plateau[J].Acta Petrologica Sinica,2014,30(2):361370.
[40]赖绍聪,朱韧之.西秦岭竹林沟新生代碱性玄武岩地球化学及其成因[J].西北大学学报:自然科学版,2012,42(6):975984.
LAI Shaocong,ZHU Renzhi.Geochemistry and Petrogenesis of the Cenozoic Alkaline Basalt from the Zhulingou Area,Western Qinling Mountain[J].Journal of Northwest University:Natural Science Edition,2012,42(6):975984.
[41]赖绍聪,秦江锋,李学军,等.昌宁—孟连缝合带干龙塘—弄巴蛇绿岩地球化学及SrNdPb同位素组成研究[J].岩石学报,2010,26(11):31953205.
LAI Shaocong,QIN Jiangfeng,LI Xuejun,et al.Geochemistry and SrNdPb Isotopic Features of the GanlongtangNongba Ophiolite from the ChangningMenglian Suture Zone[J].Acta Petrologica Sinica,2010,26(11):31953205.
[42]DEPAOLO D J,DALEY E E.Neodymium Isotopes in Basalts of the Southwest Basin and Range and Lithospheric Thinning During Continental Extension[J].Chemical Geology,2000,169(1/2):157185.
[43]徐士进,王汝成,沈渭洲,等.松潘—甘孜造山带中晋宁期花岗岩的UPb,RbSr同位素定年及其大地构造意义[J].中国科学:D辑,地球科学,1996,26(1):5258.
XU Shijin,WANG Rucheng,SHEN Weizhou,et al.UPb,RbSr Isotopic Chronology of Jinning Granites in the SongpanGanzi Orogenic Belt and Its Tectonic Significance[J].Science in China:Series D,Earth Sciences,1996,26(1):5258.
[44]凌洪飞,徐士进,沈渭洲,等.格宗、东谷岩体Nd,Sr,Pb,O同位素特征及其与扬子板块边缘其他晋宁期花岗岩对比[J].岩石学报,1998,14(3):269277.
LING Hongfei,XU Shijin,SHEN Weizhou,et al.Nd,Sr,Pb and O Isotopic Compositions of Late Proterozoic Gezong and Donggugranites in the West Margin of Yangtze Plate and Comparison with Other Coeval Granitoids[J].Acta Petrologica Sinica,1998,14(3):269277.
[45]JAHN B M,WU F Y,LO C H,et al.Crustmantle Interaction Induced by Deep Subduction of the Continental Crust:Geochemical and SrNd Isotopic Evidence from Postcollisional Maficultramafic Intrusions of the Northern Dabie Complex,Central China[J].Chemical Geology,1999,157(1/2):119146.
[46]四川省地质矿产局.四川省区域地质志[M].北京:地质出版社,1991.
Sichuan Bureau of Geology and Mineral Resources.Regional Geology of Sichuan Province[M].Beijing:Geological Publishing House,1991.
[47]PEARCE J A.Sources and Setting of Granitic Rocks[J].Episodes,1996,19(4):120125.
[48]HARRIS N B W,PEARCE J A,TINDLE A G.Geochemical Characteristics of Collisionzone Magmatism[J].Geological Society,London,Special Publication,1986,19:6781.
[49]赵永久,袁超,周美夫,等.川西老君沟和孟通沟花岗岩的地球化学特征、成因机制及对松潘—甘孜地体基底性质的约束[J].岩石学报,2007,23(5):9951006.
ZHAO Yongjiu,YUAN Chao,ZHOU Meifu,et al.Geochemistry and Petrogenesis of Laojungou and Mengtonggou Granites in Western Sichuan,China:Constraints on the Nature of SongpanGanzi Basement[J].Acta Petrologica Sinica,2007,23(5):9951006.