分形理论及其在机械工程中的应用
周明昆
[摘要]分形理论这一理论是近些年来刚刚兴起的一门新颖的高级学科。其最显著的特点是利用分数维度的视角和数学的方法来对一些客观的事物进行描述,与传统的维度空间的描述相比会更加的真实以及更加的直观。而正是因为分形理论具有这样的优点,所以才会更加的适用于机械工程方面,这不仅可以将机械物更加直观的展现出来,也能够很大程度的将工程的难度降低,将工程的效率一再提高。
[关键词]分形理论;机械工程;应用
文章编号:2095 - 4085( 2019) 04 - 0121 - 01
在七十年代,分形理论的概念首次被正式提出,进而得到了迅速发展。到现在为止,分形理论已经可以被应用到各行各业之中,几乎涵盖了一大部分的领域。而机械工程能够在评价我国的科技发展水平上面造成很大的影响,所以它的发展过程也是与分形理论息息相关的。分形理论可以被应用到机械工程的各个方面,例如,机械摩擦和对机械故障的审查还包括断裂力学和对精细机械产品的分形处理等方面。通过分形理论这一途径,人们可以更加直观的观察到机械物体以及他们的运动过程,将工程效率进一步提高,促使机械工程这一领域可以发展的更加迅速。现在已经有越来越多的学者开始研究如何能在机械工程中将机械理论运用起来,同时也是我国未来的机械工程领域进行发展的重点突破口。
1 分形理论基本介绍
过去我们在对几何问题进行处理时,例如楼梯,门窗和轮胎等,我们通常会借助一些常见的几何体来对其进行描述,也就是直线,曲线,圆柱,立方体等几何体。为了解决上述提到的这个问题,对这些广泛存在着的形状却又十分复杂的物体进行研究,美国哈佛大学的一位著名的教授首次提出了分形理论这个概念,之后通过使用这一理论对形状不规则的以及十分复杂的物体提供了一个简单并且有效的研究办法。
因为分形理论是一个近些年提出来的新兴学科,所以它还没能具备一个明确的,统一的科学定义,但是我们可以从字面上得到一个简单的定义,分形指的就是一个包括很多零碎且复杂的,同时还具有一定的相似性的物质的系统。通常来说,分形具有一定的比例,也就是说分形体系在一定的程度之内会将体系之内的每个部分都进行连续的放大,但是它的不规则程度却不会发生改变。但是在一般情况下,分形具有置换不变性的特点,也就是说物体的每一个部分在进行旋转,放大和移动的过程中都是彼此相似的。分形体系的两个基本特征就是比例性和置换不变性,这两个特征可以为分形的合体有序提供保障。在实际的研究过程中我们可以发现,物质世界中所有的形状都是可以通过一些较小的组成部分进而表现出整体的不规则性。
2分形理论在机械工程中的应用
2.1应用于研究机械摩擦
在机械工程中对分形理论进行研究的一个重要的方向就是在机械摩擦中应用分形理论,大量的实验研究数据表明,分形理论在机械摩擦领域中主要可以应用在以下几个方面。对接卸粗糙面的性质的描述,机械体的接触,对磨损的情况进行估计,对摩擦的温度进行测量等。在研究机械摩擦的过程中使用分形理论将会比我们以往所使用的传统的研究方式更加的方便,也更加的简洁。而这个过程首先会使用分形参数建立出一个机械摩擦的研究模型,将原本可能会出现的巨大的误差避免掉,同时使用了这一方法后,要相对机械摩擦研究模型进行检查就可以直接使用分形参数,所以他的准确性和合理性也就得到了很大的保证。
2.2应用于研究机械体的疲劳断裂分析
通过大量的研究数据我们可以看出,疲劳断裂裂纹的延伸路径往往都具有不规则性的特征,也正是由于这一特征使得机械体的断裂行为也就变得十分的难以确定。同时在研究的过程中我们也可以看出,在使用传统方法时,例如峰值分布法,标准方差法,还有面积比例的方法,针对疲劳段里面的问题都不是十分的有效,但这些问题也可以通过使用分形理论被简单的处理掉,只是需要有一个前提条件也就是裂纹应该是平直延伸的。经过许多专家不懈的努力终于建立出了对疲劳裂纹进行分析的系统。
3结语
其中发展的最迅猛的非线性学科也是一门影响十分深远的综合性学科中的一个。而分型理论又恰好是非线性科学的一个重要的组成部分。它能够让人们在面对一些自然科学中出现的难题的时候可以具有一些新的观念和一些新的手段,但是透过这些不规则的形态一步步的摸索,最終能够找到隐藏在背后的复杂现象之后的规则,以及局部与整体之间的本质的联系。分形理论作为一种全新的数学工具,从诞生到如今所经过的时间还不是很长,所以它仍然处于一个发展的阶段,虽然它已经涉猎了很多的方面但他的发展显然是还不够成熟的。我们相信,随着对分形理论的不断地深入研究,它将会在机械工程这一领域得到更为广泛的应用。
参考文献:
[1]蔡昊曼,简述分形理论特点及其在机械工程中的具体实践[J].科技与创新,2017,(06):10 -11.
[2]王文明,郁超,分形理论在机械工程中的应用[J].邢台职业技术学院学报,2010,27 (5):72 -73.