淫羊藿素对LPS诱导原代皮质星形胶质细胞炎性反应影响
陈夙 朱梦琳 宋加昊 徐雪 孙乐雯 陈文芳
[摘要]目的 探讨淫羊藿素(ICT)对脂多糖(LPS)诱导的原代皮质星形胶质细胞肿瘤坏死因子α(TNF-α)和诱导型一氧化氮合酶(iNOS)基因表达的影响及胰岛素样生长因子1受体(IGF-1R)阻断剂JB-1的阻断作用。方法 常规培养原代皮质星形胶质细胞,将其分为对照组、LPS组、ICT+LPS组和JB-1+ICT+LPS组。对照组和LPS组细胞分别给予体积分数0.01二甲基亚砜(DMSO)和1 mg/L的LPS处理,其余组在有或无JB-1(1 mg/L)预处理的情况下,给予ICT(10 μmol/L)预保护1 h,再加入1 mg/L的LPS共同作用6 h。应用实时荧光定量PCR检测各组细胞TNF-α和iNOS基因的表达。结果 与对照组比较,LPS组TNF-α和iNOS基因表达明显上调(F=81.98、118.60,q=20.41、25.22,P<0.01);ICT预保护能明显降低由LPS诱导的TNF-α和iNOS基因表达的上调(q=7.34、13.31,P<0.01),此作用可以被IGF-1R阻断剂JB-1所阻断(q=4.65、7.52,P<0.05)。结论ICT能够抑制LPS诱导的原代皮质星形胶质细胞的炎性反应,其抗炎机制可能与IGF-1R途径的激活有关。
[关键词]淫羊藿素;脂多糖类;星形细胞;受体,IGF1型;肿瘤坏死因子α;一氧化氮合酶Ⅱ型
[中图分类号]R338.2
[文献标志码]A
[文章编号]2096-5532(2021)02-0167-04
[ABSTRACT]Objective To investigate the effect of icaritin (ICT) on the gene expression of tumor necrosis factor-α (TNF-α) and inducible nitric-oxide synthase (iNOS) in primary cultured cortical astrocytes induced by lipopolysaccharide (LPS) and the blocking effect of the insulin-like growth factor-1 receptor (IGF-1R) antagonist JB-1.?Methods Primary cultured cortical astrocytes were obtained by conventional methods and were then divided into control group, LPS group, ICT+LPS group, and JB-1+ICT+LPS group. The astrocytes in the control group and the LPS group were treated with volume fraction 0.01 dimethyl sulfoxide and 1 mg/L LPS, respectively, and those in the other groups were pretreated with ICT (10 μmol/L) for 1 hour with or without JB-1 (1 mg/L), followed by LPS (1 mg/L) treatment for another 6 hours. Quantitative real-time PCR was used to measure the gene expression of TNF-α and iNOS in each group.?Results Compared with the control group, the LPS group had significantly upregulated gene expression of TNF-α and iNOS (F=81.98,118.60;q=20.41,25.22;P<0.01). Pretreatment with ICT significantly inhibited LPS-induced upregulation of TNF-α and iNOS (q=7.34,13.31;P<0.01), which was blocked by the IGF-1R antagonist JB-1 (q=4.65,7.52;P<0.05).?Conclusion ICT can inhibit LPS-induced inflammatory response in primary cultured cortical astrocytes, and its anti-inflammatory mechanism may be related to activation of the IGF-1R pathway.
[KEY WORDS]icaritin; lipopolysaccharides; astrocytes; receptor, IGF type 1; tumor necrosis factor-alpha; nitric oxide synthase type Ⅱ
星形胶质细胞是中枢神经系统中一种多功能的胶质细胞,与其他类型细胞相互作用发挥着多种生理功能[1-2]。近年来星形胶质细胞介导的炎症反应在中枢神经系统中的作用被广泛报道,有研究显示,阿尔茨海默病(AD)病人大脑皮质淀粉样斑块周围存在大量反应性星形胶质细胞[3-4],并伴有一些促炎细胞因子或炎症标志物的表达增加[3]。炎性因子及β-淀粉样蛋白能够直接诱导星形胶质细胞活化[5-6],形成有害的神经炎症循环。越来越多的研究表明,神经炎症贯穿于AD发生发展的始终[7-8]。因此,针对星形胶质细胞介导的AD炎症病理,开发有效的抗炎药物,可能有助于减缓AD的发生发展。既往研究表明,传统中药淫羊藿的主要活性成分淫羊藿苷可以通过限制炎症反应、氧化应激在AD病理中发挥神经保护效应[9-10],而淫羊藿素(ICT)作为淫羊藿苷的代谢衍生物,也具有很强的抗炎作用[11-12]。研究已显示,ICT能够与雌激素受体(ER)结合,发挥类雌激素样作用[13]。胰岛素样生长因子1受体(IGF-1R)介导的信号途径参与大脑发育、突触传递等功能[14]。ER与IGF-1R在神经元和神经胶质细胞中有广泛的共表达[15-16]。有研究表明,IGF-1R可以与ER相互作用,协同促进人骨肉瘤细胞的增殖并抑制炎症[17]。本实验室前期的研究已经证实,10 μmol/L的ICT可以通过ER信号途径对抗脂多糖(LPS)诱导的原代中脑星形胶质细胞的炎症反应[18],在整体动物水平,ICT能够通过IGF-1R信号途径抑制海马炎症反应[19]。但是IGF-1R信号通路是否参与ICT对抗LPS诱导的原代皮质星形胶质细胞的炎症反应,目前尚不清楚。本研究应用LPS诱导原代皮质星形胶质细胞炎性反應,探讨ICT对LPS诱导的细胞肿瘤坏死因子α(TNF-α)和诱导型一氧化氮合酶(iNOS)基因表达的影响以及JB-1的阻断作用,以期为AD提供新的治疗途径。
1 材料与方法
1.1 主要材料
ICT购自上海同田生物公司,应用二甲基亚砜(DMSO)配制成10 mmol/L的溶液;LPS及JB-1购自Sigma公司,用无菌生理盐水配制成1 g/L的溶液;DMEM/F12培养液和胎牛血清购自BI公司;青霉素/链霉素储存液购自新华制药厂,分装后置于-20 ℃冰箱保存备用;多聚-D-赖氨酸(poly-D)购自Sigma公司;新生SD大鼠(<24 h)购自青岛大任富城畜牧有限公司;TRIzol购自Invitrogen公司;逆转录试剂盒以及SYBR Green购于Takara公司;引物由Takara公司设计并合成。
1.2 原代皮质星形胶质细胞培养及分组
在超净工作台中将新生SD大鼠断头,取脑,置于含有DMEM/F12基础培养液的平皿中,在体式显微镜下分离大脑皮质,剥除脑膜和血管。用枪头轻轻吹打,使脑组织呈离散状态,收集细胞悬液至大离心管中,以1 000 r/min离心5 min,弃上清,加入含有体积分数0.10胎牛血清、100 kU/L青霉素和100 mg/L链霉素混合双抗的DMEM/F12培养液,吹打混匀。接种于20 g/L poly-D包被的150 cm2培养瓶中,置于含体积分数0.05 CO2的37 ℃细胞培养箱中培养7~10 d,期间每隔2 d更换1次培养液。待细胞铺满瓶底,呈现明显分层时,置于37 ℃恒温摇床上,以210 r/min震荡16~18 h后,弃掉上清,用DMEM/F12基础培养液清洗细胞3次,加2.5 g/L胰蛋白酶消化1~3 min,用含血清的完全培养液终止消化。将贴于培养瓶上的细胞轻柔吹下,收集于大离心管中,以1 000 r/min离心5 min后,加入完全培养液后吹打混匀。将星形胶质细胞接种于6孔板中,在光镜下观察细胞融合度达到80%~90%时进行分组和加药处理。将细胞随机分为对照组(A组)、LPS组(B组)、ICT+LPS组(C组)以及JB-1+ICT+LPS组(D组)。对照组细胞给予体积分数0.01的DMSO处理;LPS组细胞则给予1 mg/L的LPS处理6 h;ICT+LPS组细胞给予LPS前先给予ICT(10 μmol/L)预保护1 h;JB-1+ICT+LPS组细胞先给予1 mg/L的JB-1作用1 h,继而给予ICT(10 μmol/L)处理1 h,最后加入LPS共同作用6 h。
1.3 实时荧光定量PCR方法检测TNF-α和iNOS的mRNA表达
应用TRIzol提取细胞总RNA,按照Takara反转录试剂盒要求配制两步反应体系,经过42 ℃变性2 min,37 ℃反转录15 min,然后升温至85 ℃,作用5 s使反转录酶失活,于4 ℃冷却,将mRNA反转录合成cDNA。采用SYBR Green染料法定量检测目的基因TNF-α、iNOS及内参照基因GAPDH表达,按照荧光定量PCR说明书配制PCR反应体系,采用两步法经过40个循环完成扩增,采用2-△△CT法计算基因相对表达量。PCR扩增引物及其序列见表1。
1.4 统计学处理
应用GraphPad Prism 5.0软件进行统计学处理。实验结果以x2±s形式表示,多组比较采用单因素方差分析(One-Way ANOVA),并继以Tukey法进行两两比较。P<0.05表示差异有显著性。
2 结 果
与对照组比较,LPS组原代皮质星形胶质细胞的TNF-α和iNOS基因表达明显上调(F=81.98、118.60,q=20.41、25.22,P<0.01);ICT预保护能明显降低由LPS诱导的TNF-α和iNOS基因表达的上调(q=7.34、13.31,P<0.01),此作用可以被IGF-1R阻断剂JB-1所阻断(q=4.65、7.52,P<0.05)。见表2。
3 讨 论
越来越多的研究表明,小胶质细胞和星形胶质细胞的渐进激活以及随之而来的促炎因子的过度产生,是神经炎症过程中的主要因素[20]。星形胶质细胞是中枢神经系统中最丰富的胶质亚型[21-22],可与神经元等多种类型细胞相互作用[23]。在许多AD转基因小鼠模型中,常常在淀粉样斑块和(或)神经元纤维缠结这两个病理学特征出现之前,观察到激活的星形胶质细胞在皮质、海马等受影响的脑区积聚[24-25]。并且体内研究发现,淀粉样斑块周围的星形胶质细胞增生[26],炎症递质在β-淀粉样斑块和神经原纤维缠结周围高表达[27]。因此,抑制星形胶质细胞的炎症反应,或许可以减缓AD的病理进程。
传统中药淫羊藿的成骨作用以及调节性功能、调节免疫系统的作用曾被广泛报道,但是近年来人们认识到了其具有神经保护作用[28-29]。ICT是来源于淫羊藿的一种黄酮类化合物,其具有抗炎、抗氧化、抗凋亡等多种药理活性[30]。已有研究结果显示,在小鼠腹腔巨噬细胞炎症和腹膜炎模型中,ICT可以显著减少iNOS、白细胞介素6(IL-6)等炎性因子的产生[11],而在神经系统中ICT可以抑制LPS诱导的C57BL/6J小鼠的海马神经炎症[31]。为了探讨ICT的抗炎神经保护作用,本研究利用LPS诱导原代培养的皮质星形胶质细胞炎症反应,观察ICT对LPS诱导的细胞TNF-α和iNOS基因表达的影响。结果显示,LPS可明显上调星形胶质细胞炎性因子TNF-α和iNOS的基因表达,应用ICT预保护可明显抑制两种炎性因子的基因表达。
IGF-1R主要表达于神经元和星形胶质细胞,是IGF-1的直接作用靶点,并且在皮质、海马有较高水平的表达[32]。本课题组前期研究发现,激活IGF-1R信号通路可以抑制神经毒素对多巴胺能神经元的损伤[33]。为进一步探讨IGF-1R信号通路是否参与了ICT抗皮质星形胶质细胞的炎症反应,本研究观察了IGF-1R特异性阻断剂JB-1对ICT的阻断效应,结果显示JB-1预处理部分阻斷了ICT的抗炎保护作用。提示ICT的抗炎机制可能与IGF-1R信号途径的激活有关,其他的信号途径可能也参与了ICT的抗炎作用。
綜上所述,ICT能够抑制LPS诱导的原代皮质星形胶质细胞TNF-α和iNOS的基因表达,其抗炎机制可能与IGF-1R信号通路的激活有关。本研究结果为ICT对抗神经炎症提供了实验依据。
[参考文献]
[1]FAKHOURY M. Microglia and astrocytes in Alzheimers di-sease: implications for therapy[J]. Current Neuropharmacology, 2018,16(5):508-518.
[2]SAJJA V S, HLAVAC N, VANDEVORD P J. Role of glia in memory deficits following traumatic brain injury: biomarkers of glia dysfunction[J]. Frontiers in Integrative Neuroscience, 2016,10:7.
[3]SUNG P S, LIN P Y, LIU C H, et al. Neuroinflammation and neurogenesis in Alzheimers disease and potential therapeutic approaches[J]. International Journal of Molecular Sciences, 2020,21(3):E701.
[4]SASTRE M, KLOCKGETHER T, HENEKA M T. Contribution of inflammatory processes to Alzheimers disease: molecular mechanisms[J]. International Journal of Developmental Neuroscience, 2006,24(2/3):167-176.
[5]AVILA-MUOZ E, ARIAS C. When astrocytes become harmful: functional and inflammatory responses that contri-bute to Alzheimers disease[J]. Ageing Research Reviews, 2014,18:29-40.
[6]CALSOLARO V, EDISON P. Neuroinflammation in Alzheimers disease: current evidence and future directions[J]. Alzheimers & Dementia: the Journal of the Alzheimers Association, 2016,12(6):719-732.
[7]CUI J, SHEN Y, LI R N. Estrogen synthesis and signaling pathways during aging: from periphery to brain[J]. Trends in Molecular Medicine, 2013,19(3):197-209.
[8]GONZLEZ-REYES R E, NAVA-MESA M O, VARGAS-SNCHEZ K, et al. Involvement of astrocytes in Alzheimers disease from a neuroinflammatory and oxidative stress perspective[J]. Frontiers in Molecular Neuroscience, 2017,10:427.
[9]LI C R, LI Q, MEI Q B, et al. Pharmacological effects and pharmacokinetic properties of icariin, the major bioactive component in Herba Epimedii[J]. Life Sciences, 2015,126:57-68.
[10]JIN J, WANG H, HUA X Y, et al. An outline for the pharmacological effect of icariin in the nervous system[J]. Euro-pean Journal of Pharmacology, 2019,842:20-32.
[11]LAI X Q, YE Y X, SUN C H, et al. Icaritin exhibits anti-inflammatory effects in the mouse peritoneal macrophages and peritonitis model[J]. International Immunopharmacology, 2013,16(1):41-49.
[12]ZHOU J M, WU J F, CHEN X H, et al. Icariin and its deri-vative, ICT, exert anti-inflammatory, anti-tumor effects, and modulate myeloid derived suppressive cells (MDSCs) functions[J]. International Immunopharmacology, 2011,11(7):890-898.
[13]WU Z D, OU L, WANG C P, et al. Icaritin induces MC3T3-E1 subclone14 cell differentiation through estrogen receptor-mediated ERK1/2 and p38 signaling activation[J]. Biomedicine & Pharmacotherapy, 2017,94:1-9.
[14]GAZIT N, VERTKIN I, SHAPIRA I, et al. IGF-1 receptor differentially regulates spontaneous and evoked transmission via mitochondria at hippocampal synapses[J]. Neuron, 2016,89(3):583-597.
[15]XIA B, YAO Y J, CHEN J, et al. ER-alpha, IGF-1R expressions and co-expressions in newborn rats with experimental hypoxic-ischemic brain damage[J]. Journal of Sichuan University Medical Science Edition, 2004,35(5):647-649,667.
[16]QUESADA A, ROMEO H E, MICEVYCH P. Distribution and localization patterns of estrogen receptor-beta and insulin-like growth factor-1 receptors in neurons and glial cells of the female rat substantia nigra: localization of ERbeta and IGF-1R in substantia nigra[J]. The Journal of Comparative Neurology, 2007,503(1):198-208.
[17]CHEN R S, ZHANG X B, ZHU X T, et al. The crosstalk between IGF-1R and ER-α in the proliferation and anti-inflammation of nucleus pulposus cells[J]. European Review for Medical and Pharmacological Sciences, 2020,24(11):5886-5894.
[18]張文娣,张梅,白金月,等. 淫羊藿素对LPS诱导原代星形胶质细胞COX-2和iNOS基因表达影响[J]. 青岛大学学报(医学版), 2019,55(1):32-34,39.
[19]朱梦琳,王晓雯,黄琳琳,等. 淫羊藿素对脂多糖诱导的阿尔茨海默病小鼠海马炎症反应的影响[J]. 精准医学杂志, 2019,34(3):237-239,244.
[20]AHMAD M H, FATIMA M, MONDAL A C. Influence of microglia and astrocyte activation in the neuroinflammatory pathogenesis of Alzheimers disease: rational insights for the therapeutic approaches[J]. Journal of Clinical Neuroscience, 2019,59:6-11.
[21]WANG X S, YUE J, HU L N, et al. Activation of G protein-coupled receptor 30 protects neurons by regulating autophagy in astrocytes[J]. Glia, 2020,68(1):27-43.
[22]MEDEIROS R, LAFERLA F M. Astrocytes: conductors of the Alzheimer disease neuroinflammatory symphony[J]. Experimental Neurology, 2013,239:133-138.
[23]YU X Z, NAGAI J, KHAKH B S. Improved tools to study astrocytes[J]. Nature Reviews Neuroscience, 2020,21(3):121-138.
[24]SCHWAB C, KLEGERIS A, MCGEER P L. Inflammation in transgenic mouse models of neurodegenerative disorders[J]. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Di-sease, 2010,1802(10):889-902.
[25]HUR J Y, FROST G R, WU X Z, et al. The innate immunity protein IFITM3 modulates γ-secretase in Alzheimers disease[J]. Nature, 2020,586(7831):735-740.
[26]RODRGUEZ J J, OLABARRIA M, CHVATAL A, et al. Astroglia in dementia and Alzheimers disease[J]. Cell Death and Differentiation, 2009,16(3):378-385.
[27]MORALES I, GUZMN-MARTNEZ L, CERDA-TRONCOSO C, et al. Neuroinflammation in the pathogenesis of Alzheimers disease. A rational framework for the search of novel therapeutic approaches[J]. Frontiers in Cellular Neuroscience, 2014,8:112.
[28]CHO J H, JUNG J Y, LEE B J, et al. Epimedii herba: a promising herbal medicine for neuroplasticity[J]. Phytotherapy Research, 2017,31(6):838-848.
[29]WANG L L, LI Y, GUO Y B, et al. Herba epimedii: an ancient Chinese herbal medicine in the prevention and treatment of osteoporosis[J]. Current Pharmaceutical Design, 2016,22(3):328-349.
[30]ANGELONI C, BARBALACE M C, HRELIA S. Icariin and its metabolites as potential protective phytochemicals against Alzheimers disease[J]. Frontiers in Pharmacology, 2019,10:271.
[31]LIU L M, ZHAO Z X, LU L W, et al. Icariin and icaritin ameliorated hippocampus neuroinflammation via inhibiting HMGB1-related pro-inflammatory signals in lipopolysaccharide-induced inflammation model in C57BL/6J mice[J]. International Immunopharmacology, 2019,68:95-105.
[32]DYER A H, VAHDATPOUR C, SANFELIU A, et al. The role of insulin-like growth factor 1 (IGF-1) in brain development, maturation and neuroplasticity[J]. Neuroscience, 2016,325:89-99.
[33]JIANG M C, CHEN X H, ZHAO X, et al. Involvement of IGF-1 receptor signaling pathway in the neuroprotective effects of Icaritin against MPP(+)-induced toxicity in MES23.5 cells[J]. European Journal of Pharmacology, 2016,786:53-59.
(本文編辑 马伟平)