网站首页  词典首页

请输入您要查询的论文:

 

标题 探究椭圆、双曲线的一类对偶性质
范文

    陈俐宏

    

    椭圆与双曲线都属于圆锥曲线,它们在性质上体现出统一性与相似性,此类性质成为近年来高考的热点之一.下面笔者探究了椭圆与双曲线的一类对偶性质,与读者共赏,

    性质1

    F2,A,B分别是椭圆C的左、右焦点和左、右顶点,点P是椭圆C上异于A,B两点的任意一点,过点P作直线AP,PF1和PE,且直線AP与x=a相交于点D,则以BD为直径的圆与直线PF,PF都相切. 证明设直线IAP:y=k(x+a),则点D的坐标为(a,2ka),BD中点E的坐标为(a,ka).

    下证以BD为直径的圆与直线PF相切,同理可证与直线PF2相切.

    证法1

    ∵以BD为直径的圆的半径为|BE=|ka|,则d=|BE|,故以BD为直径的圆与直线PF1相切.

    证法2.

    ∵直线BF1与以BD为直径的圆相切,

    ∴与直线BF1所成角为2∠BF1E的直线PF1也与以BD为直径的圆相切.

    注∠BF1P和∠BF1E的取值范围为[-900,900].

    我们将性质l类比到双曲线,从而得到一个对偶性质,限于篇幅,以下证明从略.

    性质2 已知双曲线c:

    点F1,F2,A,B分别是双曲线C的左、右焦点和左、右顶点,点P是双曲线C上异于AB两点的任意一点,过点P作直线AP, PF1和PF2,且直线A与x=a交于点D,则以BD为直径的圆与直线PF1,PF2都相切.

    推论3 已知双曲线c:

    点E,F,A,B分别是双曲线C的左、右焦点和左、右顶点,过双曲线C上右支异于点B的任意一点P作直线AP,P和PF2,且直线AP与x=a相交于点D,则△PFIF2的内切圆是以BD为直径的圆.

随便看

 

科学优质学术资源、百科知识分享平台,免费提供知识科普、生活经验分享、中外学术论文、各类范文、学术文献、教学资料、学术期刊、会议、报纸、杂志、工具书等各类资源检索、在线阅读和软件app下载服务。

 

Copyright © 2004-2023 puapp.net All Rights Reserved
更新时间:2024/12/22 17:56:32