网站首页  词典首页

请输入您要查询的论文:

 

标题 从2008年广东文科数学试题中数列压轴题的解法看递推关系求通项的常见类型
范文 陈水松 詹 波
今年广东文科数学的最后一题是
设数列{a璶}满足a1=1,a2=2,a璶=13?(a﹏-1+2a﹏ -2)(n=3,4,…).数列{b璶}满足b1=1,b璶(n=2,3,…)是非零整数,且对任意的正整数m和自然数k,都有-1≤b璵+b﹎+1+…+b﹎+k≤1.
(1)求数列{a璶}和{b璶}的通项公式;
(2)记c璶=na璶b璶(n=1,2,…),求数列{c璶}的前n项和S璶.
本文仅对{a璶}的通项公式的求解作一探讨,请同仁指正.
解法一:由a璶=13(a﹏-1+2a﹏-2),得a璶-a﹏-1=-23(a﹏-1-a﹏-2)(n≥3),又a2-a1=1≠0,∴数列{a﹏+1-a璶}是首项为1公比为-23的等比数列,a﹏+1-a璶=-23﹏-1,
∴a璶=a1+(a2-a1)+(a3-a2)+(a4-a3)+…+(a璶-a﹏-1)=1+1+(-23)+(-23)2+…+(-23)﹏-2=1+1-(-23)﹏-11+23=85-35?(-23) n-1.
注:“本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。”
随便看

 

科学优质学术资源、百科知识分享平台,免费提供知识科普、生活经验分享、中外学术论文、各类范文、学术文献、教学资料、学术期刊、会议、报纸、杂志、工具书等各类资源检索、在线阅读和软件app下载服务。

 

Copyright © 2004-2023 puapp.net All Rights Reserved
更新时间:2024/12/23 2:37:29