网站首页  词典首页

请输入您要查询的论文:

 

标题 基于深度信念网络的轴承故障分类识别
范文

    李巍华 单外平 曾雪琼

    

    

    

    摘要:特征提取是故障智能诊断的关键步骤,然而不同的特征提取方法所得到的特征不同,导致诊断结果也可能有所差异,增加了人工特征选择的难度和不确定性。深度信念网络(Deep Belief Network,DBN)是一种典型的深度学习(Deep Learning)方法,可以通过组合低层特征形成更加抽象的高层表示,发现数据的分布式特征。DBN可直接从低层原始信号出发,通过逐层智能学习得到更好的特征表示,避免特征提取与选择的人工操作,增强识别过程的智能性。将DBN直接应用于轴承振动原始信号的处理,实现轴承故障的分类识别。试验结果表明,DBN可以直接通过原始数据对轴承故障进行分类识别,优先调节时间复杂度偏导数较大的参数,可有效控制DBN的计算成本。

随便看

 

科学优质学术资源、百科知识分享平台,免费提供知识科普、生活经验分享、中外学术论文、各类范文、学术文献、教学资料、学术期刊、会议、报纸、杂志、工具书等各类资源检索、在线阅读和软件app下载服务。

 

Copyright © 2004-2023 puapp.net All Rights Reserved
更新时间:2025/3/15 6:56:43