网站首页  词典首页

请输入您要查询的论文:

 

标题 基于卷积神经网络的图像清晰度识别方法
范文

    李福卫 李玉惠

    

    

    

    摘要:传统方法在图像清晰度识别上主要通过提取图像特征进行识别和预测,由于图像特征的提取存在一定的复杂度,尤其是对高维图像和在复杂背景环境下的特征提取。针对这一问题提出基于深度学习下的卷积神经网络(CNN)识别方法,在Convolutional Architecture for Fast Feature Embedding(caffe)框架下利用GoogLeNet网络模型,将样本图像直接作为输入参数,通过卷积神经网络进行模型训练即可得到输出结果,从而省去提取复杂的特征。通过实验验证上述方法能够较为准确的识别出图像的清晰程度。提出的方法不用提取复杂的特征,所以在图像处理中有很高的应用价值。

    关键词:深度学习;卷积神经网络;清晰度識别;caffe框架

随便看

 

科学优质学术资源、百科知识分享平台,免费提供知识科普、生活经验分享、中外学术论文、各类范文、学术文献、教学资料、学术期刊、会议、报纸、杂志、工具书等各类资源检索、在线阅读和软件app下载服务。

 

Copyright © 2004-2023 puapp.net All Rights Reserved
更新时间:2025/2/6 1:57:26