标题 | 基于Shapley解的PPP项目风险合理分担研究 |
范文 | 孟惊雷+吕广仁+吴海滨 [摘 要] PPP项目投资额度大、经营期间长、涉及相关利益者众多、任务复杂且需要较高的协作能力,在运行的过程中又会因客观环境变化及相关利益者的行为导致项目风险分配影响因素发生变化。从逻辑维、时间维和知识维的霍尔三维视角分析PPP项目的风险要素,依据PPP项目风险分担机制,公私合作风险共担、利益分享的原则,结合利益相关者理论、风险理论、shapely值法、德尔菲法等,综合考虑风险配置的风险承担意愿、项目参与程度、风险控制能力影响因素,建立基于SHAPELY解的修正的PPP项目风险配置模型,对在政府、私人企业、相关用户、金融机构之间的风险分担进行分配和协调,实现最佳风险分配方案,在此方案的指导下,合作各方都会采取积极合作的态度,使得项目实现帕累托最优。从而实现风险的平衡配置,为实现PPP项目的最终目标提供保障。 [关键词] PPP项目;风险配置;shapely [中图分类号] F294 [文献标识码] A [文章编号] 1009-6043(2017)08-0121-05 Abstract: The PPP project has big investment amounts, long operation period, many involved stakeholders and complex task and requires high cooperation ability. In the process of running, the influence factors of risk allocation will change as a result of the objective environment change and the behavior of stakeholders. Analyzing the PPP project risk factors in terms of the Hall three-dimensional view of logical dimension, time dimension and knowledge dimension, on the basis of risk sharing mechanism and the principle of public-private partnership risk-sharing and benefit sharing, combined with stakeholder theory, risk theory, shapely value method and Delphi method, considering the influence factors of bearing will of risk allocation, project participation and risk control ability, the study established the PPP project risk allocation model based on correction of shapely, and distributed and coordinated the risk sharing among government, private enterprises, related users and financial institutions, so as to achieve the optimal risk allocation scheme. Under the guidance of this solution, all parties will have a positive and cooperative attitude, and achieve the Pareto optimality, so as to achieve the balance allocation of risk and provide the guarantee for the ultimate goal of PPP project. Key words: PPP project, risk allocation, shapely 一、引言 PPP(Private-Public-Partnership)即公私合作伙伴关系,是基础设施等公用事业建设的一种项目融资模式,泛指公共部门与私营部门基于某个特定公共项目以契约方式确立的风险共担、利益分享的长期合作机制,在为社会提供高质量服务的同时,私营部门也可获得合理的利润[1]。PPP项目的推广应用缓解了政府为满足公众对基础设施的迫切需求的资金压力,为私营部门参与大型项目建设提供了契机,有利于私营部门的成长和发展。 英国利兹大学的SMITH教授研究发现,PPP模式的应用领域主要为社会效益评价可行而财务效益评价不可行的项目,而两种效益的差额部分需由公共部门的介入来加以补偿[2]。 PPP模式中,公共部门介入的方式有4种,即风险分担、权益投入、间接投资和直接投资。 一是风险分担。由最有能力承担该种风险的参与者承担,如果无法辨明,通常由公共部门来承担,以便对项目的现金流起一定的保障作用。二是权益投入。由开发商来运营和维护已有的公共设施,由此产生的早期收入,可以减轻其贷款压力。三是间接投资。包括免税、软贷款和还款宽限等。四是直接投资。一般适用于风险较高的项目以及现金流难以维系的项目。 关于PPP模式下的风险管理,国内外学者和业界取得了一定的研究成果。Peter Moles对英国的Skye Bridge项目采用私人部门融资方式的项目相关风险进行研究[3];Darrin Grimesy与Mervyn K.Lewis对PPP模式的风险进行分类,并运用Mona Carlo模拟方法对风险给与评价[4];Jonathan P.Don从公共部门的角度识别PPP模式下公用事业项目的风险[5];柯永建、王守清对基础设施PPP项目的风险分担问题进行了深入的研究[6];肖条军研究了私营部门与公共部门的利益平衡问题,构建了交通BOT项目投资模型,以对策论的方法进行分析[7];杨宏伟对BOT项目的有限追索权融资方式,分析了贷方和项目公司的风险态度和风险收益的分配问题,建立了两者之间的风险收益分配模型,得到了最优的收益平衡条件[8];何寿奎、傅鸿源分析了公私合作投资双方的最佳投资比例模型,并给出了公私双方的风险分攤系数和收益分配比例[9]。上述文献涉及对PPP项目风险识别、评价、分配和控制等方面的研究,对于PPP项目利益相关者的风险分担的研究还缺乏普适性,对于PPP项目风险配置的影响因素研究缺乏系统性。本文从逻辑维、时间维和知识维的三维视角分析PPP项目的风险要素,在综合考虑PPP项目风险配置的影响因素下,建立了基于SHAPELY解的修正的PPP项目风险配置模型,并探讨了风险的合理配置对契约激励有效性的影响。 二、公私合作风险共担、利益分享的基本原理 根据委托代理理论,对于PPP项目而言,委托人是公共部门,代理人是作为投资者的私营部门,代理人从合同中得到的期望效用应当不低于不签订合同时得到的最高期望效用。 在项目运营初期,项目本身收益率较低,公共部门为私营部门补贴其承诺的收益差额,使私营部门维持固定收益。随着项目运营收益的增加,当私营部门的收益超过公共部门承诺的收益额度且未超过超额收益上限时,公共部门不需要对其进行补贴。当项目运营收益超过一定程度时,私营部门也应当与公共部门分享超额收益,但其收益增长率有所降低。超额收益的配置应与公私双方风险分担比例相适应,即承担风险较高者可以分配较高的超额收益。公共部门与私营部门投资方分享超额收益可以对投资者起到一定的监督作用,避免其利用项目获取暴利,损害公众利益[10]。其基本原理如图1所示。 三、PPP项目的霍尔三维风险分析框架 霍尔三维结构是美国系统工程学家霍尔在1969年提出的一种系统工程方法论。他将系统工程的过程分为前后紧密衔接的7个阶段和7个步骤,并且还考虑了为完成这些阶段和步骤所需要的各种专业知识和技能[11]。因此,就形成了由时间维、逻辑维和知识维所组成的三维空间结构,为解决大型复杂系统的规划、组织、管理问题提供了一种思想方法。根据霍尔三维分析结构的系统工程理论,可将PPP项目的风险管理内容按照逻辑维、时间维和知识维建立三维结构。其中,逻辑维度指的是项目利益相关各方,包括政府、项目公司、相关金融机构等;时间维度指的是项目生命周期,包括投融资阶段、建设阶段、运营阶段和移交阶段;知识维度指的是项目风险管理:风险识别、风险量化、风险对策。通过三維结构对项目的风险进行监控,发现问题及时处理,以保证项目的顺利实施。PPP项目的三维结构如图2所示。 1.PPP项目三维结构的逻辑维。是由项目利益相关者组成,他们出于各自的目的和需要参与项目,并按一定的逻辑关系构成复杂的体系。项目利益相关者主要包括政府、项目公司、股东、金融机构、承建商、运营商、用户等,此外设计单位、咨询公司、保险公司、仲裁机构等也参与其中,起到重要作用。在项目不同阶段,他们对项目的影响不同,应当进行动态的风险配置分析。以特许权协议签订为分界点,可将PPP项目的全寿命周期的动态风险配置过程分为两个部分:项目发起至签订特许权协议为静态利益分配阶段,公私双方可依据资源投入、风险偏好等因素在特许权协议中约定初步风险配置方案;特许权协议签订至特许期结束为动态风险配置阶段,公私双方依据对初步风险配置方案的满意程度和项目实施运行过程中的绩效监控等因素对初步风险配置方案进行协商调整,实现PPP项目利益分配的公平、公正以及风险分担的科学合理,进而激励双方为实现项目而努力。 2.PPP项目三维结构的时间维。是由从时间维度对项目的一种质的描述。根据系统论,项目是人、事、物的综合体。项目的生命周期描述了项目从开始到结束的全部阶段,可分为投融资阶段、建设阶段、运营阶段和移交阶段4个阶段。在投融资阶段,政府确定待开发的项目进行可行性研究;在确认可以采取PPP项目融资模式后,政府开始组织招标。中标的项目公司在一定时间内办理好公司成立的有关事宜,正式注册以后,开始组织有关项目参与者进行项目开发。在项目建设阶段,首先,项目公司与各联合单位签订正式合同,包括贷款合同、设计合同、建设合同、保险合同以及其他咨询、管理合同等。然后,项目公司组织各相关单位进行项目建设,政府随时对项目建设状况进行监督。工程竣工通过项目验收,项目进入运营阶段。在项目运营阶段,项目公司直接运营项目或与专业管理公司签订合同并由其运营,持续到特许权协议期满。为了确保项目的运营和维护按协定进行,贷款人、投资者、政府和用户对项目可以实施监督的权利。在项目移交阶段,包括项目移交和项目公司解散等内容。 3.PPP项目三维结构的知识维。是项目风险管理,即对项目风险的识别到分析以及采取应对措施的系列过程,主要包括风险识别、风险量化、风险对策。风险识别,需要识别影响项目进展的因素并判断分析具体风险的特征,它不是一次性行为,而是要有规律地贯穿于整个项目过程。风险量化,要对风险和风险之间相互的作用进行评估。风险对策,一般分为风险避免、减缓风险、吸纳风险三种策略。风险避免是要排除特定危机起源。排除所有风险是不可能的,但特定的风险事件还是可以排除的。减缓风险是要通过减少风险事件的预期资金投入来降低风险发生的概率以及减少风险事件的风险系数。吸纳风险是要接受一切后果。这种接受可以是积极的,也可以是消极的[12]。 四、基于合作博弈的Shapely解的PPP项目风险配置模型 PPP项目中存在着大量的风险因素,通过风险类别的划分可以确定公私双方独自承担以及共同承担的风险。政治风险主要由政府部门承担,建造风险主要由承包商承担,不可抗力带来的风险由双方共同承担。风险配置的原则是要由对风险最有控制力的一方承担风险,而且承担的风险要与收益相匹配。 (一)Shapely值的确定 PPP项目的风险配置实质上是合作博弈问题,强调团体理性,效率、公平、公正。对需要多个参与方共担的风险,需要定量评估其风险量,Shapley值法是解决多人合作对策问题的一种数学方法,其地位几乎可以与Nash均衡相媲美,被多数学者认可。当n个人从事某项经济活动时,他们中若干人组合的各种合作形式,都会得到一定的效益,当主体之间的利益活动为非对抗时,合作中主体人数的增加不会引起利益的减少[13]。所以,n个主体的合作将带来最大的效益。 假设集合I为参与人的集合,对于I中的任何一个子集S都对应着一个实值函数v(S),满足: 其中,si是集合I中包含成员i的所有子集,|s|为子集S中的元素个数,n是集合I中的元素个数,w(|s|)可以看成加权因子。V(si)是子集S的效益,v(s/i)为子集S中去除成员i后可取得的效益。 對由多个参与者共担风险的PPP项目,先采用Shapely值法确定各参与方的共担风险收益,将各方收益归一化后获得各自权重,由此初步确定各参与方应承担的风险量p(i)。 (二)修正因子 Shapely值法虽然避免了平均分配,有一定的科学性,但是此分配方案默认其对利益分配的影响程度是均等的:1/n。在PPP项目实际操作过程中,风险承担意愿、项目参与程度、风险控制能力等因素对风险配置有着重要的影响,因此,必须在考虑这些因素影响的基础上,对shapely值进行修正,如图3所示。 设在shapely值的基础上,考虑项目风险配置的影响因素,建立风险配置修正因素集合为J={J},J=1,2,3;分别代表了影响PPP项目风险配置的3个关键性因素:风险承担意愿、项目参与程度、风险控制能力等。 集合I中第i个合作伙伴关于第J个修正因素的测度值为aiJ,建立分析表如下表所示。 修正因子测度值表 根据上表,即可得到影响风险配置的修正矩阵A: 对矩阵A归一化处理,得到矩阵B=(biJ)m×n。确定每个影响因素对PPP项目风险配置的影响程度λ=[λ1λ2λ3]T,根据公式: [H1,H2,H3,H4]T=B×λT 公式3 H1表示调整后各因子对政府分担风险的综合影响程度;H2表示调整后各因素对私人资企业分担风险的综合影响程度;H3表示调整后各因子对相关用户分担风险的综合影响程度;H4表示调整后各因子对金融机构分担风险的综合影响程度,则调整后各利益相关者实际承担的风险值为: R1=p1+(H1-1/n)×Q(s) R2=p2+(H2-1/n)×Q(s) R3=p3+(H3-1/n)×Q(s) R4=p4+(H4-1/n)×Q(s) (其中,Q(s)表示联盟合作共担的风险总量) 公式4 通过上述公式计算,可得到基于调整的shapely值PPP项目风险配置方案,此方案综合考虑了影响PPP项目风险配置的n个关键性因素。基于这n个关键性因素,对风险配置方案进行进一步的调整修正,更加符合客观性、公正性和合理性要求。 (三)风险分配影响系数λ的确定方法 由于每个具体的PPP项目都有自身的风险特点,因此,风险分配的影响因素对每个PPP项目的影响程度是不尽相同的。因此,在讨论PPP项目风险分配问题的时候,必须要考虑到风险分配影响系数λ。 风险分配影响系数λ可借助专家打分法按照匿名方式征求相关专家的意见,并对其进行统计、整理、分析和归纳等,综合其经验和主观判断,对难以进行定量分析的因素作出合理的估计,经多轮意见的征询、反馈和调整后,得出风险分配影响系数λ值。 (四)算例研究 某大型PPP项目,若Q0=600是未实施任何风险管理时PPP项目的不可抗力风险量,Qi(i=1,2,3,4)分别为300、500、400、350,表示政府、私人企业、相关用户、金融机构独自承担不可抗力风险量,Qi(i=5,6,…,14)分别为280、290、260、275、285、280、230、240、250、240,表示由政府与私人企业、政府与相关用户、政府与金融机构、私人企业与相关用户、私人企业与金融机构、相关用户与金融机构、政府与私人企业、政府与私人企业与金融机构、政府与相关用户与金融机构、私人企业与相关用户与金融机构共同承担风险,Q15=200表示四方共同承担的风险。通过计算可知,符合运用Shapely值法的个体及集体合理性条件。 第一步,计算shapely值。 采用四方共同承担该种风险可以降低风险量,但如何分担共担风险时的风险量是个有关公平效率的问题。现用Shapely值法计算四方共担该风险时收益的分配,政府、私人企业、相关用户、金融机构分配的收益分别为130、65、94.17、221.66。 依据风险与收益对等的原则,各方应承担风险权重为:0.3250、0.1625、0.2354、0.2771,各方应承担风险量P(i)(i=1,2,3,4)为65、32.5、47.085、55.415。(P(i)表示修正前公共部门和私人企业等相关利益者分配的风险量。) 第二步,对shapely值进行修正。 根据风险承担意愿、项目参与程度、风险控制能力等因素对shapely值进行修正。 可得修正矩阵A:0.3 0.4 0.5 0.5 0.5 0.3 0.1 0.05 0.1 0.1 0.05 0.1 对其进行归一化处理,得到矩阵B:0.3 0.4 0.5 0.5 0.5 0.3 0.1 0.05 0.1 0.1 0.05 0.1 第三步,对风险分配影响的3个因素根据专家评价得出其风险分配影响系数为λ[0.3,0.6,0.1]。 第四步,根据公式(3)计算修正后各因素相关利益方风险分配的影响程度为: HHHH=B×λT=0.3 0.4 0.50.5 0.3 0.30.1 0.2 0.10.1 0.1 0.1×[0.3,0.6,0.1]T=0.380.360.160.10 第五步,根据公式(4)可得相关利益方的风险分配方案: R1=p1+(H1-1/n)×Q(s)=65+(0.38-0.25)×200=91 R2=p2+(H2-1/n)×Q(s)=32.5+(0.36-0.25)×200=54.5 R3=p3+(H3-1/n)×Q(s)=47.085+(0.16-0.25)×200=29.085 R4=p4+(H4-1/n)×Q(s)=55.415+(0.10-0.25)×200=25.415 上述的计算结果即为PPP项目风险在政府、私人企业、相关用户、金融机构之间的最佳分配方案。在此方案的指导下,合作各方都会采取积极合作的态度,使得项目实现帕累托最优。 五、结语 PPP项目往往投资额度大、经营期间长、涉及相关利益者众多、任务复杂且需要较高的协作能力,在运行的过程中又会因客观环境变化及相关利益者的行为导致项目风险分配影响因素发生变化。因此,有必要建立合理的项目风险配置模型,综合考虑风险配置因素的影响,进行规制和激励。本文在现有的关于PPP项目风险分担研究成果的基础上,结合利益相关者理论、风险理论、shapely值法、德尔菲法等,探討PPP项目风险配置的最佳分配方案,协调各利益相关者之间的关系,从而实现风险的平衡配置,为实现PPP项目的最终目标提供保障。 本文的研究为PPP项目风险的合理配置提供了理论参考,但是许多分析还限于理论层面,有待进一步研究检验PPP模式在实际运用中项目风险分配方式的优劣性。 [参考文献] [1]Albert P C. Critical success factors for PPPs in infrastructure developments: Chinese perspective[J].Journal of Construction Engineering and Management,2010(5):484-494. [2]SMITH N J. Engineering project management [M].Oxford.Blackwell Science Ltd.,2004. [3]Peter Moles,Geoffrey Williams. Private funded infrastructure in the UK: Partnerships' risk in the Skye Bridge project [J].Transport Policy,1995,2(2) :129-134. [4]Darrin Grimsy,Mervyn K. Lewis. Evaluating the risk of public private partnerships for infrastructure projects[J]. International Journal of Project Management,2002(20) :107-118. [5]Jonathan P. Doh,Ramamurti. Reassessing risk in developing country infrastructure[J]. Long Rang Planning,2003(36) :337-353. [6]柯永建,王守清.基础设施PPP项目的风险分担[J].建筑经济,2008(4):31-35. [7]肖条军.交通BOT项目投资的对策分析[J].经济数学,2002(4). [8]杨宏伟.BOT项目“有限追索权”融资方式的风险收益分析[J].东南大学学报,2002:921-924. [9]何寿奎,傅鸿源.基于风险分摊的PPP项目投资决策与收益分配研究[J].建筑经济,2006(10):9-12. [10]王颖林,等.政府担保PPP项目复合期权价值评估[J].工程管理学报,2015(2):65-70. [11]李金海.基于霍尔三维结构的项目管理集成化研究[J].河北工业大学学报2008(4):25-29. [12]孙荣霞.基于霍尔三维结构的公共基础设施PPP项目融资模式的风险研究[J].经济经纬,2010(6):142-146. [13]史彦飞,高举红.基于shapely值法的供应链利益分配策略的改进[J].价值工程,2011(25):19-20. [14]韩亚品,蒋根谋.基于合作博弈Shapley解的PPP项目风险分担定量研究[J].商场现代化,2009(4):102. [15]王力,刘家琦.梯形模糊AHP及其在卫星方案优选中的应用[J].哈尔滨工业大学学报,2002(3):315-319. [16]Van Laargoven J M, Pedrycz W. A fuzzy extension of Saaty' s priority theorem [J]. Fuzzy Sets and Systems,1983(11): 229-241. [17]杨扬.公私合作制(PPP)项目的动态利益分配研究[D].大连理工大学,2013(5). [18]胡丽,张卫国,叶晓甦.基于SHAPELY修正的PPP项目利益分配模型研究[J].管理工程学报,2011(4):15. [19]王颖林.基于风险偏好的PPP项目风险分担博弈模型.建筑经济[J].2013(12):44-47. [20]何涛,赵国杰.基于随机合作博弈模型的PPP项目风险分担.系统工程[J].2011,29(4):88-92. [责任编辑:高萌] |
随便看 |
|
科学优质学术资源、百科知识分享平台,免费提供知识科普、生活经验分享、中外学术论文、各类范文、学术文献、教学资料、学术期刊、会议、报纸、杂志、工具书等各类资源检索、在线阅读和软件app下载服务。