椭圆的“柔情”圆永远能懂
李明海
椭圆是圆锥曲线中一个极其关键的知识点,椭圆图像和方程形式简洁、对称,探究椭圆不仅对掌握其他的圆锥曲线有极大帮助,而且还能认识到椭圆与圆的渊源关系.从图像来看,椭圆可以看作“压扁了的圆”,而圆可以看作椭圆的“特”例,因而椭圆与圆有着无穷的联系.椭圆的各种“表现”,圆一直掌握在“心”里;椭圆的“柔情”,圆永远能够读懂.
1椭圆的定义,圆能够读懂
在一张圆形纸片内部设置一个不同于圆心O的点F,折叠纸片使圆的周界上有一点落于F点,然后将纸片展开,就得到一条折痕.继续如此折叠数次,形成一系列折痕,这些折痕整体地勾画出一个椭圆轮廓.(如图1)
椭圆是圆锥曲线中一个极其关键的知识点,椭圆图像和方程形式简洁、对称,探究椭圆不仅对掌握其他的圆锥曲线有极大帮助,而且还能认识到椭圆与圆的渊源关系.从图像来看,椭圆可以看作“压扁了的圆”,而圆可以看作椭圆的“特”例,因而椭圆与圆有着无穷的联系.椭圆的各种“表现”,圆一直掌握在“心”里;椭圆的“柔情”,圆永远能够读懂.
1椭圆的定义,圆能够读懂
在一张圆形纸片内部设置一个不同于圆心O的点F,折叠纸片使圆的周界上有一点落于F点,然后将纸片展开,就得到一条折痕.继续如此折叠数次,形成一系列折痕,这些折痕整体地勾画出一个椭圆轮廓.(如图1)
椭圆是圆锥曲线中一个极其关键的知识点,椭圆图像和方程形式简洁、对称,探究椭圆不仅对掌握其他的圆锥曲线有极大帮助,而且还能认识到椭圆与圆的渊源关系.从图像来看,椭圆可以看作“压扁了的圆”,而圆可以看作椭圆的“特”例,因而椭圆与圆有着无穷的联系.椭圆的各种“表现”,圆一直掌握在“心”里;椭圆的“柔情”,圆永远能够读懂.
1椭圆的定义,圆能够读懂
在一张圆形纸片内部设置一个不同于圆心O的点F,折叠纸片使圆的周界上有一点落于F点,然后将纸片展开,就得到一条折痕.继续如此折叠数次,形成一系列折痕,这些折痕整体地勾画出一个椭圆轮廓.(如图1)
椭圆是圆锥曲线中一个极其关键的知识点,椭圆图像和方程形式简洁、对称,探究椭圆不仅对掌握其他的圆锥曲线有极大帮助,而且还能认识到椭圆与圆的渊源关系.从图像来看,椭圆可以看作“压扁了的圆”,而圆可以看作椭圆的“特”例,因而椭圆与圆有着无穷的联系.椭圆的各种“表现”,圆一直掌握在“心”里;椭圆的“柔情”,圆永远能够读懂.
1椭圆的定义,圆能够读懂
在一张圆形纸片内部设置一个不同于圆心O的点F,折叠纸片使圆的周界上有一点落于F点,然后将纸片展开,就得到一条折痕.继续如此折叠数次,形成一系列折痕,这些折痕整体地勾画出一个椭圆轮廓.(如图1)
椭圆是圆锥曲线中一个极其关键的知识点,椭圆图像和方程形式简洁、对称,探究椭圆不仅对掌握其他的圆锥曲线有极大帮助,而且还能认识到椭圆与圆的渊源关系.从图像来看,椭圆可以看作“压扁了的圆”,而圆可以看作椭圆的“特”例,因而椭圆与圆有着无穷的联系.椭圆的各种“表现”,圆一直掌握在“心”里;椭圆的“柔情”,圆永远能够读懂.
1椭圆的定义,圆能够读懂
在一张圆形纸片内部设置一个不同于圆心O的点F,折叠纸片使圆的周界上有一点落于F点,然后将纸片展开,就得到一条折痕.继续如此折叠数次,形成一系列折痕,这些折痕整体地勾画出一个椭圆轮廓.(如图1)
椭圆是圆锥曲线中一个极其关键的知识点,椭圆图像和方程形式简洁、对称,探究椭圆不仅对掌握其他的圆锥曲线有极大帮助,而且还能认识到椭圆与圆的渊源关系.从图像来看,椭圆可以看作“压扁了的圆”,而圆可以看作椭圆的“特”例,因而椭圆与圆有着无穷的联系.椭圆的各种“表现”,圆一直掌握在“心”里;椭圆的“柔情”,圆永远能够读懂.
1椭圆的定义,圆能够读懂
在一张圆形纸片内部设置一个不同于圆心O的点F,折叠纸片使圆的周界上有一点落于F点,然后将纸片展开,就得到一条折痕.继续如此折叠数次,形成一系列折痕,这些折痕整体地勾画出一个椭圆轮廓.(如图1)