红外光谱定量分析中的一种变量聚类偏最小二乘算法

毕一鸣等



摘 要 偏最小二乘算法(Partial least squares, PLS)可以很好地解决分析数据中的变量共线性问题,在光谱分析,尤其是近/中红外及拉曼光谱的定量分析中应用广泛。针对PLS存在的有效信息提取和噪声抑制问题,提出一种变量聚类重加权的PLS算法。通过对光谱的各波数变量进行聚类并分别建模,然后集成为全谱模型。通过对计算并赋予各子类不同的权重,根据对模型的贡献对变量进行重加权,从而提高算法的预测精度。汽油中的辛烷值预测和烟草中的烟碱含量预测两组近红外数据验证表明,所提出算法优于经典的PLS算法,其RMSEP在两组数据中分别降低32%和22%,在光谱数据的定量分析中具有潜在的应用优势。
相关文章!
  • 改进演示实验,提高演示实验教

    曹雪梅众所周知,化学是以实验为基础的学科.实验是化学的灵魂,也是提高学生学习兴趣的主要因素.教学实践证明,化学实验教学可以让学生

  • 素质教育在中职教育中的重要性

    杨天摘要:进入21世纪之后,素质教育已经成为全社会非常关注的一个重要话题。而在职业教育中,许多学生和家长错误的认为职业教育的本质就

  • 质谱法测定水中溶解氙的含量及

    李军杰+刘汉彬 张佳+韩娟+金贵善+张建锋<br />
    <br />
    <br />
    <br />
    摘要 利用设计的一套水样中提取并分离Xe的装置,与稀有气体质谱