污染土壤中主要石油降解基因AlkB和Nah定量检测方法的建立和应用
刘庆龙 唐景春 万晓彤
摘要[SS]建立了SYBR Green I实时荧光定量聚合酶链式反应(Real imeqPCR)检测油田污染土壤中烷烃降解基因AlkB和萘降解基因Nah的方法。比对相关降解石油菌株的GenBank序列,设计合成针对烷烃和萘降解基因扩增引物AlkBf/AlkBr和Nahf/Nahr。将纯化的常规PCR胶回收产物与pEASY1载体连接,转化到感受态细胞培养。提取并梯度稀释阳性克隆质粒,构建Real imeqPCR标准测定曲线。25 μL扩增体系最佳反应条件: 前后引物终浓度为0.2 μmol/L,12.5 μL 2×ransStart op Green qPCR SuperMix,AlkB和Nah基因最适退火温度分别为50 ℃和57 ℃。Real imeqPCR技术显示出很高的灵敏性和重复性,比传统PCR技术灵敏度高100倍。对采集于某油田3个功能区的1土壤样品中AlkB定量检测显示,石油污染严重的采油区含有最高的AlkB拷贝数,污染较轻的生活区AlkB拷贝数最少;Nah基因分布均匀。
关键词[SS]石油烃降解基因; 荧光; 聚合酶链式反应; SYBR Green I; 烷烃降解基因; 萘降解基因
1引言
石油污染是世界性公害之一,全世界每年排入到环境中的石油污染物约为8×106 t。我国每年约有6×105 t原油汇入环境,造成3.3×106 hm2的土壤面积受到石油污染\[1,2\]。石油污染物主要为烷烃和芳香烃,具有很强的生物毒性和环境破坏性\[3~5\]。烷烃单加氧酶和芳香烃末端双加氧酶分别由烷烃和芳香烃降解基因编码,是微生物代谢石油组分的主要酶系。运用分子生物技术实时定量聚合酶链反应(Real imeqPCR)对石油降解基因的定量分析可以反映微生物修复石油污染土壤的潜力\[6,7\]。
目前,运用荧光探针和荧光引物的定量PCR检测石油降解基因技术虽然特异性高,但操作复杂、成本高。Real imeqPCR技术利用荧光信号积累对未知模板进行定量分析,具有高效率、高通量、高敏感性、易操作等优点,在治理油田污染土壤中具有重要应用价值[8~10]。
针对石油组分复杂性,本研究采用SYBR Green I荧光染料Real imeqPCR技术,建立一种对油田污染土壤中烷烃降解基因AlkB及萘降解基因Nah的综合检测,确定最佳的引物和SYBR Green I浓度反应体系及最适的PCR升温程序。同时,对建立的Real imeqPCR技术的灵敏性和重复性进行检验,并应用于某油田土壤中烷烃和萘降解基因的定量测定,对在环境中追踪石油污染物及评价生物降解潜力具有重要意义。
2实验部分
2.1仪器与试剂
CX96实时荧光定量 PCR 仪(美国 BioRad公司);C5000梯度型 PCR 仪(英国echne公司);Genova微量核酸蛋白质分析仪(英国Jenway公司)。
土壤细菌基因组DNA提取试剂盒(美国Zymo Research公司);离心柱型质粒小提试剂盒(美国Omega公司);凝胶回收试剂盒(美国Axygen公司);荧光定量PCR试剂盒、pEASY1 克隆试剂盒、rans1感受态细胞(北京全式金生物技术有限公司)。
2.2实验方法
2.2.1土壤样品的采集土壤样品采集于某油田采油区(S1~S5)、生活区(S6~S9)、石油加工运输区(S10~S1) 1个代表性的点位。采用无菌铲采集0~20 cm耕层土样,装到盛有冰袋的采样
2.2.2引物的设计和合成应用Primer express 软件,分别设计扩增降解烷烃和芳香烃土壤微生物基因保守区的引物AlkBf/AlkBr和Nahf/Nahr。引物序列、扩增产物片段长度、理论PCR退火温度见表1。2.3DNA的提取及降解基因阳性模板制备
土壤微生物总DNA的提取按试剂盒操作,1.5%琼脂糖凝胶电泳检测。AlkB和Nah特异性PCR,升温程序为:9 ℃预变性 min;9 ℃ 变性20 s,退火温度为表1中各引物的理论PCR退火温度,保持30 s,72 ℃保持2 min,设35个循环;72 ℃延伸7 min。扩增产物的特异性经1.5%琼脂糖凝胶电泳检测。目的基因经胶回收试剂盒回收,克隆于pEASY1载体,转化到rans1感受态细胞。经蓝白斑筛选的白色菌落,摇菌培养,提取质粒进行酶切和M13/M13R引物测序。
2.实时荧光定量PCR技术对降解石油烃基因测定
2..1反应条件优化
用微量核酸蛋白质分析仪测定质粒DNA拷贝数和纯度\[13\]。将已知浓度的质粒依次进行9次10倍梯度稀释,作为定量PCR的阳性模板。
为得到最佳引物和荧光染料浓度及引物退火温度,在25 μL反应体系中分别设计3个引物终浓度0.08、0.2和0. μmol/L,10、12.5和15 μL的2×ransStart op Green qPCR SuperMix,AlkBf/AlkBr引物退火温度设两组对照分别为7和50 ℃,Nahf/Nahr引物退火温度分别设为55和57 ℃,加1 μL梯度稀释的重组质粒模板,0.5 μL Passive Reference Dye,dd2O补足到25 μL,同时设立无DNA阴性控制。反应条件为:9 ℃预变性30 s;9 ℃ 变性5 s, 引物退火保持15 s,72 ℃延伸10 s,共设0个循环。每一循环延伸后读取荧光信号,设定熔解曲线程序。
3结果与讨论
3.1AlkB和Nah降解基因特异性扩增
AlkB和Nah降解基因的PCR产物凝胶电泳图(图1)显示出很高的特异性,说明设计的引物和反应条件适合AlkB和Nah降解基因的定量检测。
3.2反应体系的优化
引物终浓度为0.08和0. μmol/L时, AlkB基因熔解曲线如图2所示, 纵坐标为荧光强度对温度的负导数。在7 ℃时均出现引物二聚体的干扰,说明浓度过高[S(]图2不同引物浓度熔解曲线引物终浓度设为0.2 μmol/L,当引物AlkBf/AlkBr退火温度设定为7 ℃时,如图3a,出现多条熔解杂峰,产生假阳性产物;当退火温度设为50 ℃时熔解峰单一,如图3b,显示出很高的特异性,说明50 ℃为AlkB降解基因扩增最佳的退火温度。AlkB降解基因的熔解温度M由83 ℃变为8 ℃,
这与模板浓度的梯度增加有关。从Nah降解基因的熔解峰上(图3c)可以得出引物Nahf/Nahr的最佳退火温度为57℃,没有引物二聚体的产生,特异性最高。
经过多次重复实验,加入12.5 μL 2×ransStart op Green qPCR SuperMix时,循环阈值(Ct)最低、本底反应最小。相应体系中最佳引物终浓度为0.2 μmol/L, 引物AlkBf/AlkBr和Nahf/Nahr最佳退火温度分别为50 ℃和57 ℃。
[S(]图3(a)引物AlkBf/AlkBr退火温度为7 ℃的熔解曲线;(b)引物AlkBf/AlkBr退火温度为50 ℃的熔解曲线;(c)引物Nahf/Nahr退火温度为57 ℃时的熔解曲线
3.5灵敏性检验
SYBR Green I荧光定量PCR检测到的最低AlkB和Nah基因模板质粒拷贝数分别为1.8和3.59拷贝/μL。将上述梯度稀释的AlkB和Nah基因模板质粒进行普通PCR 特异性扩增,1.5%的琼脂糖凝胶电泳检验\[1\],其能观察到清晰条带的AlkB和Nah基因最低模板质粒拷贝数分别为1.8×102和 3.59×102拷贝, 说明Real imeqPCR比普通PCR的灵敏性高100倍。
3.6对油田土壤中降解基因的测定
某油田AlkB和Nah定量结果(表2)显示,土壤中AlkB降解基因含量平均值从高到低依次为采油区1.83×107拷贝/g,石油加工运输区8.75×106拷贝/g,生活区8.68×106拷贝/g。采油区土壤石油污染最严重,AlkB含量也最高;烷烃浓度较低生活区土壤中AlkB含量最低。土壤中Nah降解基因含量分布相对均匀,采油区、石油加工运输区和生活区中均具有很高的Nah降解基因含量,分别为.62×107、6.22×107和.52×107拷贝/g。总体上Nah降解基因含量比AlkB高约0.5~1个数量级。Ahn等\[15\]研究发现,Nah降解基因编码的末端双加氧酶是将芳香烃代谢为儿茶酚的主要酶系,对萘、菲、芘及BEX均具有降解作用,而AlkB降解基因编码的末端单加氧酶降解对象大都为中短链的烷烃(C6~C15)\[16~21\]。
结论
利用的SYBR Green I荧光染料结合目的DNA的Real imeqPCR技术定量检测烷烃降解基因AlkB及萘降解基因Nah,建立了一种油田污染土壤中降解基因检测手段。对反应体系中引物和SYBR Green I荧光浓度及引物最佳退火温度条件进行优化,本方法具有很高的灵敏度和重复性。同时,本方法对某油田不同功能区石油污染土壤降解基因的定量检测揭示了油田土壤的污染程度及土壤微生物降解石油烃的潜能,对油田污染土壤的治理和监测具有重要意义。
References
1LIU WuXing, LUO YongMing, YING eng, LI ZhenGao, WU Longua. Soil, 2007, 39(2): 27-251
刘五星, 骆永明, 应 滕, 李振高, 吴龙华. 土壤, 2007, 39(2): 27-251
2DU WeiDong, WAN YunYang, ZONG NingNing, EI JiaJia, ZANG Zhiuan. J. Wuhan. Univ (Nat. Sci. Ed.), 2011, 57(): 311-322
杜卫东, 万云洋, 钟宁宁, 费佳佳, 张枝焕. 武汉大学学报, 2011, 57(): 311-322
3Gray N D, Sherry A, Grant R J, Rowan A K, ubert C R J, Callbeck C M, Aitken C M, Jones D M, Adams J J, Larter S R. Environ. Microbiol., 2011, 13(11): 2957-2975
Johnsen A R, Lipthay J R, Reichenberg , Srensen S J, Andersen O, Christensen P, Binderup M L, Jacobsen C S. Environ. Sci. echnol., 2006, 0(10): 3293-3298
5James K, Peters R E, Laird B D, Ma W K, Wickstrom M, Stephenson G L, Siciliano S D. Environ. Sci. echnol., 2011, 5(10): 586-593
6Beilen J B, unhoff E G. Appl. Microbiol. Biot., 2007, 7(1): 13-21
7Di Gennaro P, Moreno B, Annoni E, GarcíaRodríguez S, Bestetti G, Benitez E. J. azard. Mater., 2009, 172(23): 16-169
8Wagner E M. Meth. Mol. Biol., 2013, 1027: 19-5
9Nlvak , ruu M, ruu J. Sci. otal. Environ., 2012, 26: 351-358
10Bustin S A, Benes V, Garson J A, ellemans J, uggett J, Kubista M, Mueller R, Nolan , Pfaffl M W, Shipley G L. Clin. Chem., 2009, 55(): 611-622
11Powell S M, erguson S , Bowman J P, Snape I. Microbial. Ecol., 2006, 52(3): 523-532
12Park J W, Crowley D E. Appl. Microbiol. Biot., 2006, 72(6): 1322-1329
13WEN LiBin, E KongWang, YANG anChun, GUO RongLi, ZONG JunMing, ZONG ShuLin. Acta Agric. BorealiSin., 2009, 2(): 31-35
温立斌, 何孔旺, 杨汉春, 郭容利, 周俊明, 钟书霖. 华北农学报, 2009, 2(): 31-35
1ZAO Li, CUI BaoAn, CEN ongYing, WEI ZhanYong, ZENG LanLan, L XiaoLi, JIA YanYan, ZAO XuYong. Chin. J. Biot., 2008, 2(7): 119-115
赵 丽, 崔保安, 陈红英, 魏战勇, 郑兰兰, 吕晓丽, 贾艳艳, 赵绪永. 生物工程学报, 2008, 2(7): 119-115
15Ahn Y, Sanseverino J, Sayler G S. Biodegradation, 1999, 10(2): 19-157
16Stapleton R D, Sayler G S. Environ. Sci. echnol., 2000, 3(10): 1991-1999
17Giebler J, Wick L Y, Schloter M, arms , Chatzinotas A. Appl. Environ. Microb., 2013, 79(9): 3129-3132
18Wasmund K, Burns K A, Kurtboke D I, Bourne D G. Appl. Environ. Microb., 2009, 75(23): 7391-7398
19PérezdeMora A, Schulz S, Schloter M. Meth. Mol. Biol., 2010, 599: 59-68
20Paisse S, Duran R, Coulon , GoiUrriza M. Appl. Microbiol. Biot., 2011, 92(): 835-8
21Kloos K, Munch J C, Schloter M. J. Microbiol. Meth., 2006, 66(3): 86-96
AbstractSYBR Green I Real imeqPCR method was developed to quantify the numbers of copyies of AlkB (alkanes degradation gene) and Nah (naphthalene dioxygenase degradation gene) functional degradation gene corresponding to alkanes and aromatic hydrocarbons degradation. wo pairs of primers AlkBf/AlkBr and Nahf/Nahr were designed for AlkB and Nah amplification respectively, according to the nucleotide sequences of related degradation microorganisms published in GenBank. he purified recovery products of traditional PCR were combined with pEASY1 vectors and transformed in competent cells to amplify. he recombinant plasmids were extracted and used as positive templates to create standard curve through gradient dilution. he conditions for the real time PCR were as the follows: the final concentration of forward and reverse primers were 0.2 μmol/L, 2×ransStart op Green qPCR SuperMix, and the annealing temperatures of AlkB and Nah PCR were 50 ℃ and 57 ℃, respectively. he method showed a sensitivity of 100 times higher than that of the traditional PCR method and good repeatability. he numbers of copies of AlkB in three functional regions of an oilfield indicated that oil producing zone with serious oil pollution had the highest AlkB copy numbers, and residential zone with lighter oil pollution had the lowest AlkB copy numbers. Nah degradation gene distribution was more uniform.
Keywordsydrocarbon degrading genes; luorescent; Polymerase chain reaction; SYBR Green I; Alkanes monoxygenase degradation ; Naphthalene dioxygenase degradation
9Nlvak , ruu M, ruu J. Sci. otal. Environ., 2012, 26: 351-358
10Bustin S A, Benes V, Garson J A, ellemans J, uggett J, Kubista M, Mueller R, Nolan , Pfaffl M W, Shipley G L. Clin. Chem., 2009, 55(): 611-622
11Powell S M, erguson S , Bowman J P, Snape I. Microbial. Ecol., 2006, 52(3): 523-532
12Park J W, Crowley D E. Appl. Microbiol. Biot., 2006, 72(6): 1322-1329
13WEN LiBin, E KongWang, YANG anChun, GUO RongLi, ZONG JunMing, ZONG ShuLin. Acta Agric. BorealiSin., 2009, 2(): 31-35
温立斌, 何孔旺, 杨汉春, 郭容利, 周俊明, 钟书霖. 华北农学报, 2009, 2(): 31-35
1ZAO Li, CUI BaoAn, CEN ongYing, WEI ZhanYong, ZENG LanLan, L XiaoLi, JIA YanYan, ZAO XuYong. Chin. J. Biot., 2008, 2(7): 119-115
赵 丽, 崔保安, 陈红英, 魏战勇, 郑兰兰, 吕晓丽, 贾艳艳, 赵绪永. 生物工程学报, 2008, 2(7): 119-115
15Ahn Y, Sanseverino J, Sayler G S. Biodegradation, 1999, 10(2): 19-157
16Stapleton R D, Sayler G S. Environ. Sci. echnol., 2000, 3(10): 1991-1999
17Giebler J, Wick L Y, Schloter M, arms , Chatzinotas A. Appl. Environ. Microb., 2013, 79(9): 3129-3132
18Wasmund K, Burns K A, Kurtboke D I, Bourne D G. Appl. Environ. Microb., 2009, 75(23): 7391-7398
19PérezdeMora A, Schulz S, Schloter M. Meth. Mol. Biol., 2010, 599: 59-68
20Paisse S, Duran R, Coulon , GoiUrriza M. Appl. Microbiol. Biot., 2011, 92(): 835-8
21Kloos K, Munch J C, Schloter M. J. Microbiol. Meth., 2006, 66(3): 86-96
AbstractSYBR Green I Real imeqPCR method was developed to quantify the numbers of copyies of AlkB (alkanes degradation gene) and Nah (naphthalene dioxygenase degradation gene) functional degradation gene corresponding to alkanes and aromatic hydrocarbons degradation. wo pairs of primers AlkBf/AlkBr and Nahf/Nahr were designed for AlkB and Nah amplification respectively, according to the nucleotide sequences of related degradation microorganisms published in GenBank. he purified recovery products of traditional PCR were combined with pEASY1 vectors and transformed in competent cells to amplify. he recombinant plasmids were extracted and used as positive templates to create standard curve through gradient dilution. he conditions for the real time PCR were as the follows: the final concentration of forward and reverse primers were 0.2 μmol/L, 2×ransStart op Green qPCR SuperMix, and the annealing temperatures of AlkB and Nah PCR were 50 ℃ and 57 ℃, respectively. he method showed a sensitivity of 100 times higher than that of the traditional PCR method and good repeatability. he numbers of copies of AlkB in three functional regions of an oilfield indicated that oil producing zone with serious oil pollution had the highest AlkB copy numbers, and residential zone with lighter oil pollution had the lowest AlkB copy numbers. Nah degradation gene distribution was more uniform.
Keywordsydrocarbon degrading genes; luorescent; Polymerase chain reaction; SYBR Green I; Alkanes monoxygenase degradation ; Naphthalene dioxygenase degradation
9Nlvak , ruu M, ruu J. Sci. otal. Environ., 2012, 26: 351-358
10Bustin S A, Benes V, Garson J A, ellemans J, uggett J, Kubista M, Mueller R, Nolan , Pfaffl M W, Shipley G L. Clin. Chem., 2009, 55(): 611-622
11Powell S M, erguson S , Bowman J P, Snape I. Microbial. Ecol., 2006, 52(3): 523-532
12Park J W, Crowley D E. Appl. Microbiol. Biot., 2006, 72(6): 1322-1329
13WEN LiBin, E KongWang, YANG anChun, GUO RongLi, ZONG JunMing, ZONG ShuLin. Acta Agric. BorealiSin., 2009, 2(): 31-35
温立斌, 何孔旺, 杨汉春, 郭容利, 周俊明, 钟书霖. 华北农学报, 2009, 2(): 31-35
1ZAO Li, CUI BaoAn, CEN ongYing, WEI ZhanYong, ZENG LanLan, L XiaoLi, JIA YanYan, ZAO XuYong. Chin. J. Biot., 2008, 2(7): 119-115
赵 丽, 崔保安, 陈红英, 魏战勇, 郑兰兰, 吕晓丽, 贾艳艳, 赵绪永. 生物工程学报, 2008, 2(7): 119-115
15Ahn Y, Sanseverino J, Sayler G S. Biodegradation, 1999, 10(2): 19-157
16Stapleton R D, Sayler G S. Environ. Sci. echnol., 2000, 3(10): 1991-1999
17Giebler J, Wick L Y, Schloter M, arms , Chatzinotas A. Appl. Environ. Microb., 2013, 79(9): 3129-3132
18Wasmund K, Burns K A, Kurtboke D I, Bourne D G. Appl. Environ. Microb., 2009, 75(23): 7391-7398
19PérezdeMora A, Schulz S, Schloter M. Meth. Mol. Biol., 2010, 599: 59-68
20Paisse S, Duran R, Coulon , GoiUrriza M. Appl. Microbiol. Biot., 2011, 92(): 835-8
21Kloos K, Munch J C, Schloter M. J. Microbiol. Meth., 2006, 66(3): 86-96
AbstractSYBR Green I Real imeqPCR method was developed to quantify the numbers of copyies of AlkB (alkanes degradation gene) and Nah (naphthalene dioxygenase degradation gene) functional degradation gene corresponding to alkanes and aromatic hydrocarbons degradation. wo pairs of primers AlkBf/AlkBr and Nahf/Nahr were designed for AlkB and Nah amplification respectively, according to the nucleotide sequences of related degradation microorganisms published in GenBank. he purified recovery products of traditional PCR were combined with pEASY1 vectors and transformed in competent cells to amplify. he recombinant plasmids were extracted and used as positive templates to create standard curve through gradient dilution. he conditions for the real time PCR were as the follows: the final concentration of forward and reverse primers were 0.2 μmol/L, 2×ransStart op Green qPCR SuperMix, and the annealing temperatures of AlkB and Nah PCR were 50 ℃ and 57 ℃, respectively. he method showed a sensitivity of 100 times higher than that of the traditional PCR method and good repeatability. he numbers of copies of AlkB in three functional regions of an oilfield indicated that oil producing zone with serious oil pollution had the highest AlkB copy numbers, and residential zone with lighter oil pollution had the lowest AlkB copy numbers. Nah degradation gene distribution was more uniform.
Keywordsydrocarbon degrading genes; luorescent; Polymerase chain reaction; SYBR Green I; Alkanes monoxygenase degradation ; Naphthalene dioxygenase degradation
摘要[SS]建立了SYBR Green I实时荧光定量聚合酶链式反应(Real imeqPCR)检测油田污染土壤中烷烃降解基因AlkB和萘降解基因Nah的方法。比对相关降解石油菌株的GenBank序列,设计合成针对烷烃和萘降解基因扩增引物AlkBf/AlkBr和Nahf/Nahr。将纯化的常规PCR胶回收产物与pEASY1载体连接,转化到感受态细胞培养。提取并梯度稀释阳性克隆质粒,构建Real imeqPCR标准测定曲线。25 μL扩增体系最佳反应条件: 前后引物终浓度为0.2 μmol/L,12.5 μL 2×ransStart op Green qPCR SuperMix,AlkB和Nah基因最适退火温度分别为50 ℃和57 ℃。Real imeqPCR技术显示出很高的灵敏性和重复性,比传统PCR技术灵敏度高100倍。对采集于某油田3个功能区的1土壤样品中AlkB定量检测显示,石油污染严重的采油区含有最高的AlkB拷贝数,污染较轻的生活区AlkB拷贝数最少;Nah基因分布均匀。
关键词[SS]石油烃降解基因; 荧光; 聚合酶链式反应; SYBR Green I; 烷烃降解基因; 萘降解基因
1引言
石油污染是世界性公害之一,全世界每年排入到环境中的石油污染物约为8×106 t。我国每年约有6×105 t原油汇入环境,造成3.3×106 hm2的土壤面积受到石油污染\[1,2\]。石油污染物主要为烷烃和芳香烃,具有很强的生物毒性和环境破坏性\[3~5\]。烷烃单加氧酶和芳香烃末端双加氧酶分别由烷烃和芳香烃降解基因编码,是微生物代谢石油组分的主要酶系。运用分子生物技术实时定量聚合酶链反应(Real imeqPCR)对石油降解基因的定量分析可以反映微生物修复石油污染土壤的潜力\[6,7\]。
目前,运用荧光探针和荧光引物的定量PCR检测石油降解基因技术虽然特异性高,但操作复杂、成本高。Real imeqPCR技术利用荧光信号积累对未知模板进行定量分析,具有高效率、高通量、高敏感性、易操作等优点,在治理油田污染土壤中具有重要应用价值[8~10]。
针对石油组分复杂性,本研究采用SYBR Green I荧光染料Real imeqPCR技术,建立一种对油田污染土壤中烷烃降解基因AlkB及萘降解基因Nah的综合检测,确定最佳的引物和SYBR Green I浓度反应体系及最适的PCR升温程序。同时,对建立的Real imeqPCR技术的灵敏性和重复性进行检验,并应用于某油田土壤中烷烃和萘降解基因的定量测定,对在环境中追踪石油污染物及评价生物降解潜力具有重要意义。
2实验部分
2.1仪器与试剂
CX96实时荧光定量 PCR 仪(美国 BioRad公司);C5000梯度型 PCR 仪(英国echne公司);Genova微量核酸蛋白质分析仪(英国Jenway公司)。
土壤细菌基因组DNA提取试剂盒(美国Zymo Research公司);离心柱型质粒小提试剂盒(美国Omega公司);凝胶回收试剂盒(美国Axygen公司);荧光定量PCR试剂盒、pEASY1 克隆试剂盒、rans1感受态细胞(北京全式金生物技术有限公司)。
2.2实验方法
2.2.1土壤样品的采集土壤样品采集于某油田采油区(S1~S5)、生活区(S6~S9)、石油加工运输区(S10~S1) 1个代表性的点位。采用无菌铲采集0~20 cm耕层土样,装到盛有冰袋的采样
2.2.2引物的设计和合成应用Primer express 软件,分别设计扩增降解烷烃和芳香烃土壤微生物基因保守区的引物AlkBf/AlkBr和Nahf/Nahr。引物序列、扩增产物片段长度、理论PCR退火温度见表1。2.3DNA的提取及降解基因阳性模板制备
土壤微生物总DNA的提取按试剂盒操作,1.5%琼脂糖凝胶电泳检测。AlkB和Nah特异性PCR,升温程序为:9 ℃预变性 min;9 ℃ 变性20 s,退火温度为表1中各引物的理论PCR退火温度,保持30 s,72 ℃保持2 min,设35个循环;72 ℃延伸7 min。扩增产物的特异性经1.5%琼脂糖凝胶电泳检测。目的基因经胶回收试剂盒回收,克隆于pEASY1载体,转化到rans1感受态细胞。经蓝白斑筛选的白色菌落,摇菌培养,提取质粒进行酶切和M13/M13R引物测序。
2.实时荧光定量PCR技术对降解石油烃基因测定
2..1反应条件优化
用微量核酸蛋白质分析仪测定质粒DNA拷贝数和纯度\[13\]。将已知浓度的质粒依次进行9次10倍梯度稀释,作为定量PCR的阳性模板。
为得到最佳引物和荧光染料浓度及引物退火温度,在25 μL反应体系中分别设计3个引物终浓度0.08、0.2和0. μmol/L,10、12.5和15 μL的2×ransStart op Green qPCR SuperMix,AlkBf/AlkBr引物退火温度设两组对照分别为7和50 ℃,Nahf/Nahr引物退火温度分别设为55和57 ℃,加1 μL梯度稀释的重组质粒模板,0.5 μL Passive Reference Dye,dd2O补足到25 μL,同时设立无DNA阴性控制。反应条件为:9 ℃预变性30 s;9 ℃ 变性5 s, 引物退火保持15 s,72 ℃延伸10 s,共设0个循环。每一循环延伸后读取荧光信号,设定熔解曲线程序。
3结果与讨论
3.1AlkB和Nah降解基因特异性扩增
AlkB和Nah降解基因的PCR产物凝胶电泳图(图1)显示出很高的特异性,说明设计的引物和反应条件适合AlkB和Nah降解基因的定量检测。
3.2反应体系的优化
引物终浓度为0.08和0. μmol/L时, AlkB基因熔解曲线如图2所示, 纵坐标为荧光强度对温度的负导数。在7 ℃时均出现引物二聚体的干扰,说明浓度过高[S(]图2不同引物浓度熔解曲线引物终浓度设为0.2 μmol/L,当引物AlkBf/AlkBr退火温度设定为7 ℃时,如图3a,出现多条熔解杂峰,产生假阳性产物;当退火温度设为50 ℃时熔解峰单一,如图3b,显示出很高的特异性,说明50 ℃为AlkB降解基因扩增最佳的退火温度。AlkB降解基因的熔解温度M由83 ℃变为8 ℃,
这与模板浓度的梯度增加有关。从Nah降解基因的熔解峰上(图3c)可以得出引物Nahf/Nahr的最佳退火温度为57℃,没有引物二聚体的产生,特异性最高。
经过多次重复实验,加入12.5 μL 2×ransStart op Green qPCR SuperMix时,循环阈值(Ct)最低、本底反应最小。相应体系中最佳引物终浓度为0.2 μmol/L, 引物AlkBf/AlkBr和Nahf/Nahr最佳退火温度分别为50 ℃和57 ℃。
[S(]图3(a)引物AlkBf/AlkBr退火温度为7 ℃的熔解曲线;(b)引物AlkBf/AlkBr退火温度为50 ℃的熔解曲线;(c)引物Nahf/Nahr退火温度为57 ℃时的熔解曲线
3.5灵敏性检验
SYBR Green I荧光定量PCR检测到的最低AlkB和Nah基因模板质粒拷贝数分别为1.8和3.59拷贝/μL。将上述梯度稀释的AlkB和Nah基因模板质粒进行普通PCR 特异性扩增,1.5%的琼脂糖凝胶电泳检验\[1\],其能观察到清晰条带的AlkB和Nah基因最低模板质粒拷贝数分别为1.8×102和 3.59×102拷贝, 说明Real imeqPCR比普通PCR的灵敏性高100倍。
3.6对油田土壤中降解基因的测定
某油田AlkB和Nah定量结果(表2)显示,土壤中AlkB降解基因含量平均值从高到低依次为采油区1.83×107拷贝/g,石油加工运输区8.75×106拷贝/g,生活区8.68×106拷贝/g。采油区土壤石油污染最严重,AlkB含量也最高;烷烃浓度较低生活区土壤中AlkB含量最低。土壤中Nah降解基因含量分布相对均匀,采油区、石油加工运输区和生活区中均具有很高的Nah降解基因含量,分别为.62×107、6.22×107和.52×107拷贝/g。总体上Nah降解基因含量比AlkB高约0.5~1个数量级。Ahn等\[15\]研究发现,Nah降解基因编码的末端双加氧酶是将芳香烃代谢为儿茶酚的主要酶系,对萘、菲、芘及BEX均具有降解作用,而AlkB降解基因编码的末端单加氧酶降解对象大都为中短链的烷烃(C6~C15)\[16~21\]。
结论
利用的SYBR Green I荧光染料结合目的DNA的Real imeqPCR技术定量检测烷烃降解基因AlkB及萘降解基因Nah,建立了一种油田污染土壤中降解基因检测手段。对反应体系中引物和SYBR Green I荧光浓度及引物最佳退火温度条件进行优化,本方法具有很高的灵敏度和重复性。同时,本方法对某油田不同功能区石油污染土壤降解基因的定量检测揭示了油田土壤的污染程度及土壤微生物降解石油烃的潜能,对油田污染土壤的治理和监测具有重要意义。
References
1LIU WuXing, LUO YongMing, YING eng, LI ZhenGao, WU Longua. Soil, 2007, 39(2): 27-251
刘五星, 骆永明, 应 滕, 李振高, 吴龙华. 土壤, 2007, 39(2): 27-251
2DU WeiDong, WAN YunYang, ZONG NingNing, EI JiaJia, ZANG Zhiuan. J. Wuhan. Univ (Nat. Sci. Ed.), 2011, 57(): 311-322
杜卫东, 万云洋, 钟宁宁, 费佳佳, 张枝焕. 武汉大学学报, 2011, 57(): 311-322
3Gray N D, Sherry A, Grant R J, Rowan A K, ubert C R J, Callbeck C M, Aitken C M, Jones D M, Adams J J, Larter S R. Environ. Microbiol., 2011, 13(11): 2957-2975
Johnsen A R, Lipthay J R, Reichenberg , Srensen S J, Andersen O, Christensen P, Binderup M L, Jacobsen C S. Environ. Sci. echnol., 2006, 0(10): 3293-3298
5James K, Peters R E, Laird B D, Ma W K, Wickstrom M, Stephenson G L, Siciliano S D. Environ. Sci. echnol., 2011, 5(10): 586-593
6Beilen J B, unhoff E G. Appl. Microbiol. Biot., 2007, 7(1): 13-21
7Di Gennaro P, Moreno B, Annoni E, GarcíaRodríguez S, Bestetti G, Benitez E. J. azard. Mater., 2009, 172(23): 16-169
8Wagner E M. Meth. Mol. Biol., 2013, 1027: 19-5
9Nlvak , ruu M, ruu J. Sci. otal. Environ., 2012, 26: 351-358
10Bustin S A, Benes V, Garson J A, ellemans J, uggett J, Kubista M, Mueller R, Nolan , Pfaffl M W, Shipley G L. Clin. Chem., 2009, 55(): 611-622
11Powell S M, erguson S , Bowman J P, Snape I. Microbial. Ecol., 2006, 52(3): 523-532
12Park J W, Crowley D E. Appl. Microbiol. Biot., 2006, 72(6): 1322-1329
13WEN LiBin, E KongWang, YANG anChun, GUO RongLi, ZONG JunMing, ZONG ShuLin. Acta Agric. BorealiSin., 2009, 2(): 31-35
温立斌, 何孔旺, 杨汉春, 郭容利, 周俊明, 钟书霖. 华北农学报, 2009, 2(): 31-35
1ZAO Li, CUI BaoAn, CEN ongYing, WEI ZhanYong, ZENG LanLan, L XiaoLi, JIA YanYan, ZAO XuYong. Chin. J. Biot., 2008, 2(7): 119-115
赵 丽, 崔保安, 陈红英, 魏战勇, 郑兰兰, 吕晓丽, 贾艳艳, 赵绪永. 生物工程学报, 2008, 2(7): 119-115
15Ahn Y, Sanseverino J, Sayler G S. Biodegradation, 1999, 10(2): 19-157
16Stapleton R D, Sayler G S. Environ. Sci. echnol., 2000, 3(10): 1991-1999
17Giebler J, Wick L Y, Schloter M, arms , Chatzinotas A. Appl. Environ. Microb., 2013, 79(9): 3129-3132
18Wasmund K, Burns K A, Kurtboke D I, Bourne D G. Appl. Environ. Microb., 2009, 75(23): 7391-7398
19PérezdeMora A, Schulz S, Schloter M. Meth. Mol. Biol., 2010, 599: 59-68
20Paisse S, Duran R, Coulon , GoiUrriza M. Appl. Microbiol. Biot., 2011, 92(): 835-8
21Kloos K, Munch J C, Schloter M. J. Microbiol. Meth., 2006, 66(3): 86-96
AbstractSYBR Green I Real imeqPCR method was developed to quantify the numbers of copyies of AlkB (alkanes degradation gene) and Nah (naphthalene dioxygenase degradation gene) functional degradation gene corresponding to alkanes and aromatic hydrocarbons degradation. wo pairs of primers AlkBf/AlkBr and Nahf/Nahr were designed for AlkB and Nah amplification respectively, according to the nucleotide sequences of related degradation microorganisms published in GenBank. he purified recovery products of traditional PCR were combined with pEASY1 vectors and transformed in competent cells to amplify. he recombinant plasmids were extracted and used as positive templates to create standard curve through gradient dilution. he conditions for the real time PCR were as the follows: the final concentration of forward and reverse primers were 0.2 μmol/L, 2×ransStart op Green qPCR SuperMix, and the annealing temperatures of AlkB and Nah PCR were 50 ℃ and 57 ℃, respectively. he method showed a sensitivity of 100 times higher than that of the traditional PCR method and good repeatability. he numbers of copies of AlkB in three functional regions of an oilfield indicated that oil producing zone with serious oil pollution had the highest AlkB copy numbers, and residential zone with lighter oil pollution had the lowest AlkB copy numbers. Nah degradation gene distribution was more uniform.
Keywordsydrocarbon degrading genes; luorescent; Polymerase chain reaction; SYBR Green I; Alkanes monoxygenase degradation ; Naphthalene dioxygenase degradation
9Nlvak , ruu M, ruu J. Sci. otal. Environ., 2012, 26: 351-358
10Bustin S A, Benes V, Garson J A, ellemans J, uggett J, Kubista M, Mueller R, Nolan , Pfaffl M W, Shipley G L. Clin. Chem., 2009, 55(): 611-622
11Powell S M, erguson S , Bowman J P, Snape I. Microbial. Ecol., 2006, 52(3): 523-532
12Park J W, Crowley D E. Appl. Microbiol. Biot., 2006, 72(6): 1322-1329
13WEN LiBin, E KongWang, YANG anChun, GUO RongLi, ZONG JunMing, ZONG ShuLin. Acta Agric. BorealiSin., 2009, 2(): 31-35
温立斌, 何孔旺, 杨汉春, 郭容利, 周俊明, 钟书霖. 华北农学报, 2009, 2(): 31-35
1ZAO Li, CUI BaoAn, CEN ongYing, WEI ZhanYong, ZENG LanLan, L XiaoLi, JIA YanYan, ZAO XuYong. Chin. J. Biot., 2008, 2(7): 119-115
赵 丽, 崔保安, 陈红英, 魏战勇, 郑兰兰, 吕晓丽, 贾艳艳, 赵绪永. 生物工程学报, 2008, 2(7): 119-115
15Ahn Y, Sanseverino J, Sayler G S. Biodegradation, 1999, 10(2): 19-157
16Stapleton R D, Sayler G S. Environ. Sci. echnol., 2000, 3(10): 1991-1999
17Giebler J, Wick L Y, Schloter M, arms , Chatzinotas A. Appl. Environ. Microb., 2013, 79(9): 3129-3132
18Wasmund K, Burns K A, Kurtboke D I, Bourne D G. Appl. Environ. Microb., 2009, 75(23): 7391-7398
19PérezdeMora A, Schulz S, Schloter M. Meth. Mol. Biol., 2010, 599: 59-68
20Paisse S, Duran R, Coulon , GoiUrriza M. Appl. Microbiol. Biot., 2011, 92(): 835-8
21Kloos K, Munch J C, Schloter M. J. Microbiol. Meth., 2006, 66(3): 86-96
AbstractSYBR Green I Real imeqPCR method was developed to quantify the numbers of copyies of AlkB (alkanes degradation gene) and Nah (naphthalene dioxygenase degradation gene) functional degradation gene corresponding to alkanes and aromatic hydrocarbons degradation. wo pairs of primers AlkBf/AlkBr and Nahf/Nahr were designed for AlkB and Nah amplification respectively, according to the nucleotide sequences of related degradation microorganisms published in GenBank. he purified recovery products of traditional PCR were combined with pEASY1 vectors and transformed in competent cells to amplify. he recombinant plasmids were extracted and used as positive templates to create standard curve through gradient dilution. he conditions for the real time PCR were as the follows: the final concentration of forward and reverse primers were 0.2 μmol/L, 2×ransStart op Green qPCR SuperMix, and the annealing temperatures of AlkB and Nah PCR were 50 ℃ and 57 ℃, respectively. he method showed a sensitivity of 100 times higher than that of the traditional PCR method and good repeatability. he numbers of copies of AlkB in three functional regions of an oilfield indicated that oil producing zone with serious oil pollution had the highest AlkB copy numbers, and residential zone with lighter oil pollution had the lowest AlkB copy numbers. Nah degradation gene distribution was more uniform.
Keywordsydrocarbon degrading genes; luorescent; Polymerase chain reaction; SYBR Green I; Alkanes monoxygenase degradation ; Naphthalene dioxygenase degradation
9Nlvak , ruu M, ruu J. Sci. otal. Environ., 2012, 26: 351-358
10Bustin S A, Benes V, Garson J A, ellemans J, uggett J, Kubista M, Mueller R, Nolan , Pfaffl M W, Shipley G L. Clin. Chem., 2009, 55(): 611-622
11Powell S M, erguson S , Bowman J P, Snape I. Microbial. Ecol., 2006, 52(3): 523-532
12Park J W, Crowley D E. Appl. Microbiol. Biot., 2006, 72(6): 1322-1329
13WEN LiBin, E KongWang, YANG anChun, GUO RongLi, ZONG JunMing, ZONG ShuLin. Acta Agric. BorealiSin., 2009, 2(): 31-35
温立斌, 何孔旺, 杨汉春, 郭容利, 周俊明, 钟书霖. 华北农学报, 2009, 2(): 31-35
1ZAO Li, CUI BaoAn, CEN ongYing, WEI ZhanYong, ZENG LanLan, L XiaoLi, JIA YanYan, ZAO XuYong. Chin. J. Biot., 2008, 2(7): 119-115
赵 丽, 崔保安, 陈红英, 魏战勇, 郑兰兰, 吕晓丽, 贾艳艳, 赵绪永. 生物工程学报, 2008, 2(7): 119-115
15Ahn Y, Sanseverino J, Sayler G S. Biodegradation, 1999, 10(2): 19-157
16Stapleton R D, Sayler G S. Environ. Sci. echnol., 2000, 3(10): 1991-1999
17Giebler J, Wick L Y, Schloter M, arms , Chatzinotas A. Appl. Environ. Microb., 2013, 79(9): 3129-3132
18Wasmund K, Burns K A, Kurtboke D I, Bourne D G. Appl. Environ. Microb., 2009, 75(23): 7391-7398
19PérezdeMora A, Schulz S, Schloter M. Meth. Mol. Biol., 2010, 599: 59-68
20Paisse S, Duran R, Coulon , GoiUrriza M. Appl. Microbiol. Biot., 2011, 92(): 835-8
21Kloos K, Munch J C, Schloter M. J. Microbiol. Meth., 2006, 66(3): 86-96
AbstractSYBR Green I Real imeqPCR method was developed to quantify the numbers of copyies of AlkB (alkanes degradation gene) and Nah (naphthalene dioxygenase degradation gene) functional degradation gene corresponding to alkanes and aromatic hydrocarbons degradation. wo pairs of primers AlkBf/AlkBr and Nahf/Nahr were designed for AlkB and Nah amplification respectively, according to the nucleotide sequences of related degradation microorganisms published in GenBank. he purified recovery products of traditional PCR were combined with pEASY1 vectors and transformed in competent cells to amplify. he recombinant plasmids were extracted and used as positive templates to create standard curve through gradient dilution. he conditions for the real time PCR were as the follows: the final concentration of forward and reverse primers were 0.2 μmol/L, 2×ransStart op Green qPCR SuperMix, and the annealing temperatures of AlkB and Nah PCR were 50 ℃ and 57 ℃, respectively. he method showed a sensitivity of 100 times higher than that of the traditional PCR method and good repeatability. he numbers of copies of AlkB in three functional regions of an oilfield indicated that oil producing zone with serious oil pollution had the highest AlkB copy numbers, and residential zone with lighter oil pollution had the lowest AlkB copy numbers. Nah degradation gene distribution was more uniform.
Keywordsydrocarbon degrading genes; luorescent; Polymerase chain reaction; SYBR Green I; Alkanes monoxygenase degradation ; Naphthalene dioxygenase degradation