测定土壤中三硝基酚类物质
刘玉等
摘要建立了超高效液相色谱串联质谱(UPLCMS/MS)同时测定3种三硝基酚类残留量的方法。样品经改进的QuEChERS(快速、简单、廉价、高效、灵活和安全)前处理方法一步完成提取净化,经添加1%甲酸的乙腈提取,C18和石墨化炭黑(GCB)吸附剂填料净化,提取液经离心后直接过膜上机检测,提取和净化的效果能够满足检测要求。UPLCMS/MS方法采用Accucore PFP 色谱柱(150 mm× 2.1 mm,2.6 μm),柱温30 ℃,流动相为乙腈和乙酸铵缓冲盐,梯度洗脱,流速0.3 mL/min,电喷雾电离源负离子模式(ESI
Symbolm@@ )、多反应监测(MRM)模式检测,外标法定量。2,4,6三硝基苯酚、2,4,6三硝基间苯二酚和2,4,6三硝基均苯三酚3种三硝基酚类物质在0.005~5.0 mg/L范围内线性关系良好,相关系数为0.9942~0.9962。在0.01,0.1和1.0 mg/kg水平下的平均加标回收率为79.3%~94.8%; 相对标准偏差为3.1%~6.6%; 方法的检出限(S/N=3)为0.002~0.005 mg/kg。本方法简单、快速、灵敏、准确,满足环境污染检测的要求。
关键词超高效液相色谱串联质谱法; 2,4,6三硝基苯酚; 2,4,6三硝基间苯二酚; 2,4,6三硝基均苯三酚; QuEChERS方法; 土壤
1引言
随着工业发展,三硝基酚类物质由于其特殊的结构,被广泛用于含能材料、医药、农药、染料以及橡胶工业生产中\[1,2\]。三硝基酚类主要有2,4,6三硝基苯酚(俗称苦味酸,TNP)、2,4,6三硝基间苯二酚(俗称斯蒂芬酸,TNR)、2,4,6三硝基均苯三酚(TNPG)。由于三硝基酚类物质生产和使用过程会流失到土壤和周围环境中,能持久存在于土壤环境中,破坏土壤结构,阻碍或抑制土壤微生物和植物的生命活动;同时由于其具有较强的水溶性,可以通过渗透和降水的淋洗作用污染地表水体系,导致病变,危害人类健康。因此,三硝基酚类对环境和人类健康造成的危害将备受关注。
目前对于三硝基酚类物质的环境控制研究多集中在降解菌种的培养、降解反应器的研制等污染降解处理方面\[3~7\],在水质、土壤的污染监控检测方面却相对滞后,且多采用分光光度法对三硝基酚类总量进行检测\[8\]。目前,检测硝基酚类的方法主要有分光光度法\[9\]、气相色谱法\[10\]、液相色谱法\[11,12\]、气相色谱质谱联用法\[13\],这些相关的方法都只涉及部分硝基酚类,对于三硝基酚类特殊的强极性、热不稳定的化学性质所适合的检测方法研究较少。
目前,较常用的前处理方法有固相提取(SPE)\[14~17\]、加速溶剂提取(ASE)\[18~20\]、微波辅助提取(MAE)\[21~23\]和超声波辅助提取(USE)\[24~26\]等,这些方法取代了传统的耗费大量时间和溶剂的普通液液提取,但是通常需要后续的较繁琐的操作步骤,甚至要求特殊的设备或者特殊的高温等环境下进行,而最初应用于农药残留检测的QuEChERS(Quick, Eesy, Cheap, Effective, Rugged and Safe)方法\[27,28\]是一种快速、简单、高效的样品前处理方法,在食品和生物安全领域得到了广泛应用,但在净化土壤、检测硝基酚类应用少见报道。本研究将超高效液相色谱质谱联用法(UPLCMS/MS)应用于三硝基酚类多残留痕量快速分析,克服了目标化合物强极性、易分解、难以检测分离所带来的弊端,具有灵敏度高、确证性强、抗干扰能力强等优势,将改进的QuEChERS方法应用于土壤样品前处理,考察了不同吸附剂的净化效果,同时简化了前处理步骤,提取液直接进行UPLCMS/MS分析,可实现土壤中3种三硝基酚类物质的同时定性与定量检测。
2实验部分
2.1仪器与试剂
AcquityTM超高效液相色谱仪(UPLC), Quattro PremierTMXE三重四级杆质谱仪(Waters 公司); AllegraTM X22R型离心机(Beckman公司); Sk8200LH超声波清洗器(上海科导公司); MilliQA10超纯水机; IKAMS3漩涡混合器; 0.22 μm有机过滤膜(Waters公司)
3种三硝基酚类标准品分别为2,4,6三硝基苯酚(TNP)、2,4,6三硝基间苯二酚(TNR)和2,4,6三硝基均苯三酚(TNPG), 均购自德国Dr. Ehrenstorfer GH公司(纯度>98%); 吸附剂填料N丙基乙二胺(PSA)、石墨化碳黑(GCB)、C18(Agela公司); 乙腈(色谱纯,德国Merck公司); MgSO4、乙酸铵(分析纯); 实验用水为超纯水。
2.2标准品制备
用乙腈将标准品配制成浓度为100 mg/L的单标标准储备液,再将单标标准储备液稀释配制成混合标准储备液,实验时以初始流动相将混合标准储备液配制成不同浓度的标准工作液。
2.3QuEChERS一步提取净化前处理方法
准确称取1.00g土壤样品,置于15 mL塑料离心管中,加入0.5 mL水浸润20 min,加入5 mL 1%甲酸的乙腈,涡旋提取2 min,离心后,取上清液, 加入1.0 g无水MgSO4、1.0 g NaCl,涡旋20 s后,离心取上清液,加入吸附剂,涡旋2 min,以10000 r/min高速离心3 min,取上清液, 过0.22 μm滤膜, 上机检测。
3结果与讨论
3.1色谱条件的选择
本实验选择乙腈乙酸铵为流动相,采用梯度洗脱,通过实验证实,一方面乙腈比甲醇洗脱能力强,各组分的分析时间明显缩短,各色谱峰相对对称;另一方面,选择乙酸铵缓冲体系对于三硝基酚类不但分离效果最好,而且冲洗色谱柱比较便利,同时乙酸铵体系在液相色谱质谱中也很有优势。选择优化的最佳色谱条件,在5 min内完成了3种三硝基酚的分离检测,分离度好,峰形对称尖锐,无明显拖尾,具体土壤基质的总离子流图见图1。
Symbolm@@ 模式下,对3种三硝基酚物质的质谱条件进行了优化, 分别采用全扫描和子离子扫描方式优化得到了母离子、子离子及各自的最佳锥孔电压和碰撞能量,以响应值最大的碎片离子为定量离子,次级响应离子为定性离子。图2为MRM模式下3种三硝基酚类的定量离子对的单通道扫描质谱图。
3种硝基酚的检测采用负离子模式,分别选择其[M-H]
Symbolm@@ 作为母离子,进行二级质谱裂解分析,在15~40 eV区间内, 不断增加二级碰撞能量,子离子碎片逐渐增多。
通过质谱裂解研究发现,2,4,6三硝基苯酚准分子离子峰m/z 228.1 在二级碰撞裂解下,分别失去一个NO2、两个NO2,生成子离子m/z 182.1和136.1,且m/z 136.1响应值较大,选择为定量离子。2,4,6三硝基间苯二酚准分子离子峰m/z 244.1,在二级碰撞裂解下,生成子离子m/z 198.1和181.1,分别代表失去NO2,失去NO2和OH,但m/z 181离子峰极不稳定,继续裂解为小分子离子峰,所以选择m/z 198.1为定量离子。2,4,6三硝基均苯三酚准分子离子峰m/z 266.1 在二级碰撞裂解下,失去一个NO2,生成子离子m/z 227.1;苯环上失去硝基和羟基后,再失去CNO2,发生重排, 形成,生成m/z 95.1离子,但两离子峰相比较,m/z 227.1响应值、质量数均较大,选择为定量离子。通过对离子对的选择和相应电压的确定,得到了最优质谱条件(表2)。
3.3QuEChERS前处理步骤的简化
土壤样品因地区差异,性质差别较大,因此本研究选择添加1%甲酸的乙腈为提取剂,以增加3种酸性目标物在乙腈中的提取率和稳定性,并采用无缓冲溶液的QuEChERS方法,进行液相色谱质谱联用分析。土壤样品经提取、净化,取上清液过膜待测。方法简便、操作误差小,适合日常检验。
3.4吸附剂的选择
吸附剂作用于提取液中,既须尽可能地吸附杂质;又要最大限度地保留目标物,保证较高的回收率。吸附剂对杂质的吸附、净化很大程度上有利于降低基质效应,从而减少对ESI电离源质谱中响应值的干扰。吸附剂的选择取决于样品提取物中的脂肪、蛋白、色素等大分子有机物或者杂质等的含量。
土壤样品中存在脂肪、动植物残留、色素等杂质,为选择合适的吸附剂,采用2.3节的操作方法,选择加入浓度均为25 mg/mL的3种吸附剂C18, GCBC18和PSAC18,分别考察了回收率和净化效果。 结果表明, GCBC18吸附剂对几种目标物的回收率最高;且由图2可知,处理后的土壤基质背景值低,分离度和峰形均较好,说明该组合吸附剂同时对脂肪、蛋白和植物片状结构色素等杂质的净化效果较好,因此选择GCBC18作为吸附剂。
采用经过改进的QuEChERS前处理方法处理土壤样品并检测,结果表明,0.1 mg/L的3种硝基酚的基质效应分别为3.9%,4.1%和3.8%, 1 mg/L的3种硝基酚的基质效应分别为4.7%,2.0%和3.2%,均小于10%,基质效应对定量分析的影响较小,可以忽略,这进一步说明改进的前处理方法净化效果好,可以避免使用基质标准曲线,定量方法更简便。
3.8实际样品测定
为了验证方法的实用性,选择采集几个土壤样品,包括农田、化学工业区、某合成区域附近3个不同地区,同时将不同土壤基质添加50 μg/kg浓度的标准物质作对照,采用本方法进行检测分析,结果见表4。被测的农田、化学工业区土壤样品未检出目标化合物,而某合成区域附近土壤含有一定浓度的2,4,6三硝基间苯二酚。同时,也充分证实本方法符合能够满足三硝基酚类快速检测和确证分析。
4结论
建立了土壤中2,4,6三硝基苯酚、2,4,6三硝基间苯二酚和2,4,6三硝基均苯三酚3种三硝基酚的QuEChERSUPLCMS/MS分析检测方法。采用改进的QuEChERS一步提取净化的前处理方法处理土壤样品,未使用缓冲溶液,考察了不同吸附剂的净化效果,同时简化了前处理的步骤,本方法可以作为土壤样品中三硝基酚类多残留痕量检测及常规检测方法,也可以为土壤及其它沉积物治理、修复工作研究提供方法依据。
3Hofmann K W, Knackmuss H J, Heiss G. Appl. Environ. Microbiol., 2004, 70(5): 2854-2860
4Singh B, Kaur J, Singh K. Biotechnol. Lett., 2011, 33(12): 2411-2415
5Shen J, Zhang J, Zuo Y. J. Hazard Mater., 2009, 163(3): 1199-1206
6Weidhaas J L, Schroeder E D, Chang D P. Biotechnol. Bioeng., 2007, 97(6): 1408-1414
7Yost S L, Pennington J C, Brannon J M. Institute of Microbiology., 2007, 54(8): 1262-1266
8Khue do N, Chat N V, Minh do B. Mater. Sci. Eng. C Mater. Biol. Appl., 2013, 33(4): 1975-1982
9Niazi A, Yazdanipour A. Talanta, 2009, 146(2): 421-427
10WU Jie, CAO Lei, LI YingMing. Chinese Journal of Chromatography, 2004, 22(5): 562
武 杰, 曹 磊, 李英明. 色谱, 2004, 22(5): 562
11Hu C,Chen B, He M. J. Chromatogr. A, 2013, 1300: 165-172
12Elbarbry F, Wilby K, Alcorn J. J. Chromatogr. B, 2006, 834(2): 199-203
13PdillaSnchez J A, PlazaBolaos P, RomeroGonzlez R, BaracoBoniua N, MartínezVidal J L, GarridoFrenich A. Talanta, 2011, 85(5): 2397-2404
14Zhu S, Niu W, Li H. Talanta, 2009, 79(5): 1441-1445
15Allen D, Bui A D, Cain N. Anal. Bioanal. Chem., 2013, 405(30): 9869-9877
16Liu X, Yang T, Hu J. J. Chromatogr. Sci., 2013, 51(1): 87-91
17Gineys N, Giroud B, Vulliet E. Anal. Bioanal. Chem., 2010, 397(6): 2295-2302
18WU Gang, DONG SuoZhuai, PAN LuLu. Chinese Journal of Chromatography, 2013, 31(7): 697-702
吴 刚, 董锁拽, 潘璐璐. 色谱, 2013, 31(7): 697-702
19Ge X, Wu X, Liang S. J. Chromatogr. Sci., 2013, 51(11): 233-236
20XU DunMing, LU ShengYu, CHEN DaJie. Chinese Journal of Chromatography, 2013, 31(3): 218-222
徐敦明, 卢声宇, 陈达捷. 色谱, 2013, 31(3): 218-222
21Prakash Maran J, Sivakumar V, Sridhar R. Carbohydr. Polym., 2013, 97(2): 703-709
22Al Bittar S, PérinoIssartier S, Dangles O. Food Chem., 2013, 141(3): 3268-3272
23Samavati V. Int. J. Biol. Macromol., 2013, 61: 142-149
24Burdel M, andrejov J, Balogh I S. Chem. Commun (Camb)., 2012, 48(41): 5007-5009
25Li S, Li T, Gao P. J. Chromatogr. Sci., 2013, 51(9): 233-236
26MorenoGonzlez D, HuertasPérez J F, GarcíaCamtnpa A M. J. Chromatogr. A, 2013, 58(8)1315-1317
27Luzardo O P, RuizSurez N, AlmeidaGonzlez M. Anal. Bioanal. Chem., 2013, 405(29): 9523-9536
28Lega F, Contiero L, Biancotto G. Food Addit. Contam. Part A, 2013, 30(6): 949-957
29YAO MengKan, MA BingLiang, MA YueMing. Journal of Pharmaceutical Analysis, 2010, 12(5): 2436-2440
姚梦侃, 马秉亮, 马越鸣. 药物分析杂志, 2010, 12(5): 2436-2440
AbstractA simple, rapid sensitive and accurate ultra performance liquid chromatography tandem mass spectrometric (UPLCMS/MS) method was developed for the simultaneous determination of 2,4,6trinitrophenol, trinitroresorcinate, trinitrophloroglucinol residues in soil. The sample was pretreated by using the modified QuEChERS (quick, easy, cheap, effective, rigged, and safe) method that completed the extraction and cleanup steps in one procedure. In this none buffer QuEChERS method, samples were extracted with 1% formic acid + acetonitrile, cleaned up with primary graphitized carbon black (GCB) and C18 sorbent, then centrifuged and filtrated before detection. The pretreatment method was simple, rapid and effective and can meet the detection requirements. The UPLCMS/MS method was performed on Waters Accucore PFP (150 mm× 2.1 mm, 2.6 μm) and the column temperature was 30 ℃, the gradient elution with acetonitrile and ammonium acetate as the mobile phase and the flow rate was 0.3 mL/min. The negative electrospray ionization (ESI
Symbolm@@ ) source under the multiple reaction monitoring (MRM) mode and external standard method were used for quantification. The results showed that the correlation coefficients up to 0.9942 were obtained across a concentration range of 0.005-5.0 mg/L. The limits of detection (LOD) ranged from 0.002 to 0.005 mg/kg (S/N=3). The method was validated with soil samples spiked at three fortification levels (0.01, 0.1 and 1 mg/kg) and recoveries were in the range of 79.3%-94.8% with relative standard deviations (RSD) of 3.1%-6.6%.
KeywordsUltra performance liquid chromatography tandem mass spectrery; 2,4,6Trinitrophenol; 2,4,6Trinitroresorcinate; 2,4,6Trinitrophloroglucinol; QuEChERS method; Soil
武 杰, 曹 磊, 李英明. 色谱, 2004, 22(5): 562
11Hu C,Chen B, He M. J. Chromatogr. A, 2013, 1300: 165-172
12Elbarbry F, Wilby K, Alcorn J. J. Chromatogr. B, 2006, 834(2): 199-203
13PdillaSnchez J A, PlazaBolaos P, RomeroGonzlez R, BaracoBoniua N, MartínezVidal J L, GarridoFrenich A. Talanta, 2011, 85(5): 2397-2404
14Zhu S, Niu W, Li H. Talanta, 2009, 79(5): 1441-1445
15Allen D, Bui A D, Cain N. Anal. Bioanal. Chem., 2013, 405(30): 9869-9877
16Liu X, Yang T, Hu J. J. Chromatogr. Sci., 2013, 51(1): 87-91
17Gineys N, Giroud B, Vulliet E. Anal. Bioanal. Chem., 2010, 397(6): 2295-2302
18WU Gang, DONG SuoZhuai, PAN LuLu. Chinese Journal of Chromatography, 2013, 31(7): 697-702
吴 刚, 董锁拽, 潘璐璐. 色谱, 2013, 31(7): 697-702
19Ge X, Wu X, Liang S. J. Chromatogr. Sci., 2013, 51(11): 233-236
20XU DunMing, LU ShengYu, CHEN DaJie. Chinese Journal of Chromatography, 2013, 31(3): 218-222
徐敦明, 卢声宇, 陈达捷. 色谱, 2013, 31(3): 218-222
21Prakash Maran J, Sivakumar V, Sridhar R. Carbohydr. Polym., 2013, 97(2): 703-709
22Al Bittar S, PérinoIssartier S, Dangles O. Food Chem., 2013, 141(3): 3268-3272
23Samavati V. Int. J. Biol. Macromol., 2013, 61: 142-149
24Burdel M, andrejov J, Balogh I S. Chem. Commun (Camb)., 2012, 48(41): 5007-5009
25Li S, Li T, Gao P. J. Chromatogr. Sci., 2013, 51(9): 233-236
26MorenoGonzlez D, HuertasPérez J F, GarcíaCamtnpa A M. J. Chromatogr. A, 2013, 58(8)1315-1317
27Luzardo O P, RuizSurez N, AlmeidaGonzlez M. Anal. Bioanal. Chem., 2013, 405(29): 9523-9536
28Lega F, Contiero L, Biancotto G. Food Addit. Contam. Part A, 2013, 30(6): 949-957
29YAO MengKan, MA BingLiang, MA YueMing. Journal of Pharmaceutical Analysis, 2010, 12(5): 2436-2440
姚梦侃, 马秉亮, 马越鸣. 药物分析杂志, 2010, 12(5): 2436-2440
AbstractA simple, rapid sensitive and accurate ultra performance liquid chromatography tandem mass spectrometric (UPLCMS/MS) method was developed for the simultaneous determination of 2,4,6trinitrophenol, trinitroresorcinate, trinitrophloroglucinol residues in soil. The sample was pretreated by using the modified QuEChERS (quick, easy, cheap, effective, rigged, and safe) method that completed the extraction and cleanup steps in one procedure. In this none buffer QuEChERS method, samples were extracted with 1% formic acid + acetonitrile, cleaned up with primary graphitized carbon black (GCB) and C18 sorbent, then centrifuged and filtrated before detection. The pretreatment method was simple, rapid and effective and can meet the detection requirements. The UPLCMS/MS method was performed on Waters Accucore PFP (150 mm× 2.1 mm, 2.6 μm) and the column temperature was 30 ℃, the gradient elution with acetonitrile and ammonium acetate as the mobile phase and the flow rate was 0.3 mL/min. The negative electrospray ionization (ESI
Symbolm@@ ) source under the multiple reaction monitoring (MRM) mode and external standard method were used for quantification. The results showed that the correlation coefficients up to 0.9942 were obtained across a concentration range of 0.005-5.0 mg/L. The limits of detection (LOD) ranged from 0.002 to 0.005 mg/kg (S/N=3). The method was validated with soil samples spiked at three fortification levels (0.01, 0.1 and 1 mg/kg) and recoveries were in the range of 79.3%-94.8% with relative standard deviations (RSD) of 3.1%-6.6%.
KeywordsUltra performance liquid chromatography tandem mass spectrery; 2,4,6Trinitrophenol; 2,4,6Trinitroresorcinate; 2,4,6Trinitrophloroglucinol; QuEChERS method; Soil
武 杰, 曹 磊, 李英明. 色谱, 2004, 22(5): 562
11Hu C,Chen B, He M. J. Chromatogr. A, 2013, 1300: 165-172
12Elbarbry F, Wilby K, Alcorn J. J. Chromatogr. B, 2006, 834(2): 199-203
13PdillaSnchez J A, PlazaBolaos P, RomeroGonzlez R, BaracoBoniua N, MartínezVidal J L, GarridoFrenich A. Talanta, 2011, 85(5): 2397-2404
14Zhu S, Niu W, Li H. Talanta, 2009, 79(5): 1441-1445
15Allen D, Bui A D, Cain N. Anal. Bioanal. Chem., 2013, 405(30): 9869-9877
16Liu X, Yang T, Hu J. J. Chromatogr. Sci., 2013, 51(1): 87-91
17Gineys N, Giroud B, Vulliet E. Anal. Bioanal. Chem., 2010, 397(6): 2295-2302
18WU Gang, DONG SuoZhuai, PAN LuLu. Chinese Journal of Chromatography, 2013, 31(7): 697-702
吴 刚, 董锁拽, 潘璐璐. 色谱, 2013, 31(7): 697-702
19Ge X, Wu X, Liang S. J. Chromatogr. Sci., 2013, 51(11): 233-236
20XU DunMing, LU ShengYu, CHEN DaJie. Chinese Journal of Chromatography, 2013, 31(3): 218-222
徐敦明, 卢声宇, 陈达捷. 色谱, 2013, 31(3): 218-222
21Prakash Maran J, Sivakumar V, Sridhar R. Carbohydr. Polym., 2013, 97(2): 703-709
22Al Bittar S, PérinoIssartier S, Dangles O. Food Chem., 2013, 141(3): 3268-3272
23Samavati V. Int. J. Biol. Macromol., 2013, 61: 142-149
24Burdel M, andrejov J, Balogh I S. Chem. Commun (Camb)., 2012, 48(41): 5007-5009
25Li S, Li T, Gao P. J. Chromatogr. Sci., 2013, 51(9): 233-236
26MorenoGonzlez D, HuertasPérez J F, GarcíaCamtnpa A M. J. Chromatogr. A, 2013, 58(8)1315-1317
27Luzardo O P, RuizSurez N, AlmeidaGonzlez M. Anal. Bioanal. Chem., 2013, 405(29): 9523-9536
28Lega F, Contiero L, Biancotto G. Food Addit. Contam. Part A, 2013, 30(6): 949-957
29YAO MengKan, MA BingLiang, MA YueMing. Journal of Pharmaceutical Analysis, 2010, 12(5): 2436-2440
姚梦侃, 马秉亮, 马越鸣. 药物分析杂志, 2010, 12(5): 2436-2440
AbstractA simple, rapid sensitive and accurate ultra performance liquid chromatography tandem mass spectrometric (UPLCMS/MS) method was developed for the simultaneous determination of 2,4,6trinitrophenol, trinitroresorcinate, trinitrophloroglucinol residues in soil. The sample was pretreated by using the modified QuEChERS (quick, easy, cheap, effective, rigged, and safe) method that completed the extraction and cleanup steps in one procedure. In this none buffer QuEChERS method, samples were extracted with 1% formic acid + acetonitrile, cleaned up with primary graphitized carbon black (GCB) and C18 sorbent, then centrifuged and filtrated before detection. The pretreatment method was simple, rapid and effective and can meet the detection requirements. The UPLCMS/MS method was performed on Waters Accucore PFP (150 mm× 2.1 mm, 2.6 μm) and the column temperature was 30 ℃, the gradient elution with acetonitrile and ammonium acetate as the mobile phase and the flow rate was 0.3 mL/min. The negative electrospray ionization (ESI
Symbolm@@ ) source under the multiple reaction monitoring (MRM) mode and external standard method were used for quantification. The results showed that the correlation coefficients up to 0.9942 were obtained across a concentration range of 0.005-5.0 mg/L. The limits of detection (LOD) ranged from 0.002 to 0.005 mg/kg (S/N=3). The method was validated with soil samples spiked at three fortification levels (0.01, 0.1 and 1 mg/kg) and recoveries were in the range of 79.3%-94.8% with relative standard deviations (RSD) of 3.1%-6.6%.
KeywordsUltra performance liquid chromatography tandem mass spectrery; 2,4,6Trinitrophenol; 2,4,6Trinitroresorcinate; 2,4,6Trinitrophloroglucinol; QuEChERS method; Soil
摘要建立了超高效液相色谱串联质谱(UPLCMS/MS)同时测定3种三硝基酚类残留量的方法。样品经改进的QuEChERS(快速、简单、廉价、高效、灵活和安全)前处理方法一步完成提取净化,经添加1%甲酸的乙腈提取,C18和石墨化炭黑(GCB)吸附剂填料净化,提取液经离心后直接过膜上机检测,提取和净化的效果能够满足检测要求。UPLCMS/MS方法采用Accucore PFP 色谱柱(150 mm× 2.1 mm,2.6 μm),柱温30 ℃,流动相为乙腈和乙酸铵缓冲盐,梯度洗脱,流速0.3 mL/min,电喷雾电离源负离子模式(ESI
Symbolm@@ )、多反应监测(MRM)模式检测,外标法定量。2,4,6三硝基苯酚、2,4,6三硝基间苯二酚和2,4,6三硝基均苯三酚3种三硝基酚类物质在0.005~5.0 mg/L范围内线性关系良好,相关系数为0.9942~0.9962。在0.01,0.1和1.0 mg/kg水平下的平均加标回收率为79.3%~94.8%; 相对标准偏差为3.1%~6.6%; 方法的检出限(S/N=3)为0.002~0.005 mg/kg。本方法简单、快速、灵敏、准确,满足环境污染检测的要求。
关键词超高效液相色谱串联质谱法; 2,4,6三硝基苯酚; 2,4,6三硝基间苯二酚; 2,4,6三硝基均苯三酚; QuEChERS方法; 土壤
1引言
随着工业发展,三硝基酚类物质由于其特殊的结构,被广泛用于含能材料、医药、农药、染料以及橡胶工业生产中\[1,2\]。三硝基酚类主要有2,4,6三硝基苯酚(俗称苦味酸,TNP)、2,4,6三硝基间苯二酚(俗称斯蒂芬酸,TNR)、2,4,6三硝基均苯三酚(TNPG)。由于三硝基酚类物质生产和使用过程会流失到土壤和周围环境中,能持久存在于土壤环境中,破坏土壤结构,阻碍或抑制土壤微生物和植物的生命活动;同时由于其具有较强的水溶性,可以通过渗透和降水的淋洗作用污染地表水体系,导致病变,危害人类健康。因此,三硝基酚类对环境和人类健康造成的危害将备受关注。
目前对于三硝基酚类物质的环境控制研究多集中在降解菌种的培养、降解反应器的研制等污染降解处理方面\[3~7\],在水质、土壤的污染监控检测方面却相对滞后,且多采用分光光度法对三硝基酚类总量进行检测\[8\]。目前,检测硝基酚类的方法主要有分光光度法\[9\]、气相色谱法\[10\]、液相色谱法\[11,12\]、气相色谱质谱联用法\[13\],这些相关的方法都只涉及部分硝基酚类,对于三硝基酚类特殊的强极性、热不稳定的化学性质所适合的检测方法研究较少。
目前,较常用的前处理方法有固相提取(SPE)\[14~17\]、加速溶剂提取(ASE)\[18~20\]、微波辅助提取(MAE)\[21~23\]和超声波辅助提取(USE)\[24~26\]等,这些方法取代了传统的耗费大量时间和溶剂的普通液液提取,但是通常需要后续的较繁琐的操作步骤,甚至要求特殊的设备或者特殊的高温等环境下进行,而最初应用于农药残留检测的QuEChERS(Quick, Eesy, Cheap, Effective, Rugged and Safe)方法\[27,28\]是一种快速、简单、高效的样品前处理方法,在食品和生物安全领域得到了广泛应用,但在净化土壤、检测硝基酚类应用少见报道。本研究将超高效液相色谱质谱联用法(UPLCMS/MS)应用于三硝基酚类多残留痕量快速分析,克服了目标化合物强极性、易分解、难以检测分离所带来的弊端,具有灵敏度高、确证性强、抗干扰能力强等优势,将改进的QuEChERS方法应用于土壤样品前处理,考察了不同吸附剂的净化效果,同时简化了前处理步骤,提取液直接进行UPLCMS/MS分析,可实现土壤中3种三硝基酚类物质的同时定性与定量检测。
2实验部分
2.1仪器与试剂
AcquityTM超高效液相色谱仪(UPLC), Quattro PremierTMXE三重四级杆质谱仪(Waters 公司); AllegraTM X22R型离心机(Beckman公司); Sk8200LH超声波清洗器(上海科导公司); MilliQA10超纯水机; IKAMS3漩涡混合器; 0.22 μm有机过滤膜(Waters公司)
3种三硝基酚类标准品分别为2,4,6三硝基苯酚(TNP)、2,4,6三硝基间苯二酚(TNR)和2,4,6三硝基均苯三酚(TNPG), 均购自德国Dr. Ehrenstorfer GH公司(纯度>98%); 吸附剂填料N丙基乙二胺(PSA)、石墨化碳黑(GCB)、C18(Agela公司); 乙腈(色谱纯,德国Merck公司); MgSO4、乙酸铵(分析纯); 实验用水为超纯水。
2.2标准品制备
用乙腈将标准品配制成浓度为100 mg/L的单标标准储备液,再将单标标准储备液稀释配制成混合标准储备液,实验时以初始流动相将混合标准储备液配制成不同浓度的标准工作液。
2.3QuEChERS一步提取净化前处理方法
准确称取1.00g土壤样品,置于15 mL塑料离心管中,加入0.5 mL水浸润20 min,加入5 mL 1%甲酸的乙腈,涡旋提取2 min,离心后,取上清液, 加入1.0 g无水MgSO4、1.0 g NaCl,涡旋20 s后,离心取上清液,加入吸附剂,涡旋2 min,以10000 r/min高速离心3 min,取上清液, 过0.22 μm滤膜, 上机检测。
3结果与讨论
3.1色谱条件的选择
本实验选择乙腈乙酸铵为流动相,采用梯度洗脱,通过实验证实,一方面乙腈比甲醇洗脱能力强,各组分的分析时间明显缩短,各色谱峰相对对称;另一方面,选择乙酸铵缓冲体系对于三硝基酚类不但分离效果最好,而且冲洗色谱柱比较便利,同时乙酸铵体系在液相色谱质谱中也很有优势。选择优化的最佳色谱条件,在5 min内完成了3种三硝基酚的分离检测,分离度好,峰形对称尖锐,无明显拖尾,具体土壤基质的总离子流图见图1。
Symbolm@@ 模式下,对3种三硝基酚物质的质谱条件进行了优化, 分别采用全扫描和子离子扫描方式优化得到了母离子、子离子及各自的最佳锥孔电压和碰撞能量,以响应值最大的碎片离子为定量离子,次级响应离子为定性离子。图2为MRM模式下3种三硝基酚类的定量离子对的单通道扫描质谱图。
3种硝基酚的检测采用负离子模式,分别选择其[M-H]
Symbolm@@ 作为母离子,进行二级质谱裂解分析,在15~40 eV区间内, 不断增加二级碰撞能量,子离子碎片逐渐增多。
通过质谱裂解研究发现,2,4,6三硝基苯酚准分子离子峰m/z 228.1 在二级碰撞裂解下,分别失去一个NO2、两个NO2,生成子离子m/z 182.1和136.1,且m/z 136.1响应值较大,选择为定量离子。2,4,6三硝基间苯二酚准分子离子峰m/z 244.1,在二级碰撞裂解下,生成子离子m/z 198.1和181.1,分别代表失去NO2,失去NO2和OH,但m/z 181离子峰极不稳定,继续裂解为小分子离子峰,所以选择m/z 198.1为定量离子。2,4,6三硝基均苯三酚准分子离子峰m/z 266.1 在二级碰撞裂解下,失去一个NO2,生成子离子m/z 227.1;苯环上失去硝基和羟基后,再失去CNO2,发生重排, 形成,生成m/z 95.1离子,但两离子峰相比较,m/z 227.1响应值、质量数均较大,选择为定量离子。通过对离子对的选择和相应电压的确定,得到了最优质谱条件(表2)。
3.3QuEChERS前处理步骤的简化
土壤样品因地区差异,性质差别较大,因此本研究选择添加1%甲酸的乙腈为提取剂,以增加3种酸性目标物在乙腈中的提取率和稳定性,并采用无缓冲溶液的QuEChERS方法,进行液相色谱质谱联用分析。土壤样品经提取、净化,取上清液过膜待测。方法简便、操作误差小,适合日常检验。
3.4吸附剂的选择
吸附剂作用于提取液中,既须尽可能地吸附杂质;又要最大限度地保留目标物,保证较高的回收率。吸附剂对杂质的吸附、净化很大程度上有利于降低基质效应,从而减少对ESI电离源质谱中响应值的干扰。吸附剂的选择取决于样品提取物中的脂肪、蛋白、色素等大分子有机物或者杂质等的含量。
土壤样品中存在脂肪、动植物残留、色素等杂质,为选择合适的吸附剂,采用2.3节的操作方法,选择加入浓度均为25 mg/mL的3种吸附剂C18, GCBC18和PSAC18,分别考察了回收率和净化效果。 结果表明, GCBC18吸附剂对几种目标物的回收率最高;且由图2可知,处理后的土壤基质背景值低,分离度和峰形均较好,说明该组合吸附剂同时对脂肪、蛋白和植物片状结构色素等杂质的净化效果较好,因此选择GCBC18作为吸附剂。
采用经过改进的QuEChERS前处理方法处理土壤样品并检测,结果表明,0.1 mg/L的3种硝基酚的基质效应分别为3.9%,4.1%和3.8%, 1 mg/L的3种硝基酚的基质效应分别为4.7%,2.0%和3.2%,均小于10%,基质效应对定量分析的影响较小,可以忽略,这进一步说明改进的前处理方法净化效果好,可以避免使用基质标准曲线,定量方法更简便。
3.8实际样品测定
为了验证方法的实用性,选择采集几个土壤样品,包括农田、化学工业区、某合成区域附近3个不同地区,同时将不同土壤基质添加50 μg/kg浓度的标准物质作对照,采用本方法进行检测分析,结果见表4。被测的农田、化学工业区土壤样品未检出目标化合物,而某合成区域附近土壤含有一定浓度的2,4,6三硝基间苯二酚。同时,也充分证实本方法符合能够满足三硝基酚类快速检测和确证分析。
4结论
建立了土壤中2,4,6三硝基苯酚、2,4,6三硝基间苯二酚和2,4,6三硝基均苯三酚3种三硝基酚的QuEChERSUPLCMS/MS分析检测方法。采用改进的QuEChERS一步提取净化的前处理方法处理土壤样品,未使用缓冲溶液,考察了不同吸附剂的净化效果,同时简化了前处理的步骤,本方法可以作为土壤样品中三硝基酚类多残留痕量检测及常规检测方法,也可以为土壤及其它沉积物治理、修复工作研究提供方法依据。
3Hofmann K W, Knackmuss H J, Heiss G. Appl. Environ. Microbiol., 2004, 70(5): 2854-2860
4Singh B, Kaur J, Singh K. Biotechnol. Lett., 2011, 33(12): 2411-2415
5Shen J, Zhang J, Zuo Y. J. Hazard Mater., 2009, 163(3): 1199-1206
6Weidhaas J L, Schroeder E D, Chang D P. Biotechnol. Bioeng., 2007, 97(6): 1408-1414
7Yost S L, Pennington J C, Brannon J M. Institute of Microbiology., 2007, 54(8): 1262-1266
8Khue do N, Chat N V, Minh do B. Mater. Sci. Eng. C Mater. Biol. Appl., 2013, 33(4): 1975-1982
9Niazi A, Yazdanipour A. Talanta, 2009, 146(2): 421-427
10WU Jie, CAO Lei, LI YingMing. Chinese Journal of Chromatography, 2004, 22(5): 562
武 杰, 曹 磊, 李英明. 色谱, 2004, 22(5): 562
11Hu C,Chen B, He M. J. Chromatogr. A, 2013, 1300: 165-172
12Elbarbry F, Wilby K, Alcorn J. J. Chromatogr. B, 2006, 834(2): 199-203
13PdillaSnchez J A, PlazaBolaos P, RomeroGonzlez R, BaracoBoniua N, MartínezVidal J L, GarridoFrenich A. Talanta, 2011, 85(5): 2397-2404
14Zhu S, Niu W, Li H. Talanta, 2009, 79(5): 1441-1445
15Allen D, Bui A D, Cain N. Anal. Bioanal. Chem., 2013, 405(30): 9869-9877
16Liu X, Yang T, Hu J. J. Chromatogr. Sci., 2013, 51(1): 87-91
17Gineys N, Giroud B, Vulliet E. Anal. Bioanal. Chem., 2010, 397(6): 2295-2302
18WU Gang, DONG SuoZhuai, PAN LuLu. Chinese Journal of Chromatography, 2013, 31(7): 697-702
吴 刚, 董锁拽, 潘璐璐. 色谱, 2013, 31(7): 697-702
19Ge X, Wu X, Liang S. J. Chromatogr. Sci., 2013, 51(11): 233-236
20XU DunMing, LU ShengYu, CHEN DaJie. Chinese Journal of Chromatography, 2013, 31(3): 218-222
徐敦明, 卢声宇, 陈达捷. 色谱, 2013, 31(3): 218-222
21Prakash Maran J, Sivakumar V, Sridhar R. Carbohydr. Polym., 2013, 97(2): 703-709
22Al Bittar S, PérinoIssartier S, Dangles O. Food Chem., 2013, 141(3): 3268-3272
23Samavati V. Int. J. Biol. Macromol., 2013, 61: 142-149
24Burdel M, andrejov J, Balogh I S. Chem. Commun (Camb)., 2012, 48(41): 5007-5009
25Li S, Li T, Gao P. J. Chromatogr. Sci., 2013, 51(9): 233-236
26MorenoGonzlez D, HuertasPérez J F, GarcíaCamtnpa A M. J. Chromatogr. A, 2013, 58(8)1315-1317
27Luzardo O P, RuizSurez N, AlmeidaGonzlez M. Anal. Bioanal. Chem., 2013, 405(29): 9523-9536
28Lega F, Contiero L, Biancotto G. Food Addit. Contam. Part A, 2013, 30(6): 949-957
29YAO MengKan, MA BingLiang, MA YueMing. Journal of Pharmaceutical Analysis, 2010, 12(5): 2436-2440
姚梦侃, 马秉亮, 马越鸣. 药物分析杂志, 2010, 12(5): 2436-2440
AbstractA simple, rapid sensitive and accurate ultra performance liquid chromatography tandem mass spectrometric (UPLCMS/MS) method was developed for the simultaneous determination of 2,4,6trinitrophenol, trinitroresorcinate, trinitrophloroglucinol residues in soil. The sample was pretreated by using the modified QuEChERS (quick, easy, cheap, effective, rigged, and safe) method that completed the extraction and cleanup steps in one procedure. In this none buffer QuEChERS method, samples were extracted with 1% formic acid + acetonitrile, cleaned up with primary graphitized carbon black (GCB) and C18 sorbent, then centrifuged and filtrated before detection. The pretreatment method was simple, rapid and effective and can meet the detection requirements. The UPLCMS/MS method was performed on Waters Accucore PFP (150 mm× 2.1 mm, 2.6 μm) and the column temperature was 30 ℃, the gradient elution with acetonitrile and ammonium acetate as the mobile phase and the flow rate was 0.3 mL/min. The negative electrospray ionization (ESI
Symbolm@@ ) source under the multiple reaction monitoring (MRM) mode and external standard method were used for quantification. The results showed that the correlation coefficients up to 0.9942 were obtained across a concentration range of 0.005-5.0 mg/L. The limits of detection (LOD) ranged from 0.002 to 0.005 mg/kg (S/N=3). The method was validated with soil samples spiked at three fortification levels (0.01, 0.1 and 1 mg/kg) and recoveries were in the range of 79.3%-94.8% with relative standard deviations (RSD) of 3.1%-6.6%.
KeywordsUltra performance liquid chromatography tandem mass spectrery; 2,4,6Trinitrophenol; 2,4,6Trinitroresorcinate; 2,4,6Trinitrophloroglucinol; QuEChERS method; Soil
武 杰, 曹 磊, 李英明. 色谱, 2004, 22(5): 562
11Hu C,Chen B, He M. J. Chromatogr. A, 2013, 1300: 165-172
12Elbarbry F, Wilby K, Alcorn J. J. Chromatogr. B, 2006, 834(2): 199-203
13PdillaSnchez J A, PlazaBolaos P, RomeroGonzlez R, BaracoBoniua N, MartínezVidal J L, GarridoFrenich A. Talanta, 2011, 85(5): 2397-2404
14Zhu S, Niu W, Li H. Talanta, 2009, 79(5): 1441-1445
15Allen D, Bui A D, Cain N. Anal. Bioanal. Chem., 2013, 405(30): 9869-9877
16Liu X, Yang T, Hu J. J. Chromatogr. Sci., 2013, 51(1): 87-91
17Gineys N, Giroud B, Vulliet E. Anal. Bioanal. Chem., 2010, 397(6): 2295-2302
18WU Gang, DONG SuoZhuai, PAN LuLu. Chinese Journal of Chromatography, 2013, 31(7): 697-702
吴 刚, 董锁拽, 潘璐璐. 色谱, 2013, 31(7): 697-702
19Ge X, Wu X, Liang S. J. Chromatogr. Sci., 2013, 51(11): 233-236
20XU DunMing, LU ShengYu, CHEN DaJie. Chinese Journal of Chromatography, 2013, 31(3): 218-222
徐敦明, 卢声宇, 陈达捷. 色谱, 2013, 31(3): 218-222
21Prakash Maran J, Sivakumar V, Sridhar R. Carbohydr. Polym., 2013, 97(2): 703-709
22Al Bittar S, PérinoIssartier S, Dangles O. Food Chem., 2013, 141(3): 3268-3272
23Samavati V. Int. J. Biol. Macromol., 2013, 61: 142-149
24Burdel M, andrejov J, Balogh I S. Chem. Commun (Camb)., 2012, 48(41): 5007-5009
25Li S, Li T, Gao P. J. Chromatogr. Sci., 2013, 51(9): 233-236
26MorenoGonzlez D, HuertasPérez J F, GarcíaCamtnpa A M. J. Chromatogr. A, 2013, 58(8)1315-1317
27Luzardo O P, RuizSurez N, AlmeidaGonzlez M. Anal. Bioanal. Chem., 2013, 405(29): 9523-9536
28Lega F, Contiero L, Biancotto G. Food Addit. Contam. Part A, 2013, 30(6): 949-957
29YAO MengKan, MA BingLiang, MA YueMing. Journal of Pharmaceutical Analysis, 2010, 12(5): 2436-2440
姚梦侃, 马秉亮, 马越鸣. 药物分析杂志, 2010, 12(5): 2436-2440
AbstractA simple, rapid sensitive and accurate ultra performance liquid chromatography tandem mass spectrometric (UPLCMS/MS) method was developed for the simultaneous determination of 2,4,6trinitrophenol, trinitroresorcinate, trinitrophloroglucinol residues in soil. The sample was pretreated by using the modified QuEChERS (quick, easy, cheap, effective, rigged, and safe) method that completed the extraction and cleanup steps in one procedure. In this none buffer QuEChERS method, samples were extracted with 1% formic acid + acetonitrile, cleaned up with primary graphitized carbon black (GCB) and C18 sorbent, then centrifuged and filtrated before detection. The pretreatment method was simple, rapid and effective and can meet the detection requirements. The UPLCMS/MS method was performed on Waters Accucore PFP (150 mm× 2.1 mm, 2.6 μm) and the column temperature was 30 ℃, the gradient elution with acetonitrile and ammonium acetate as the mobile phase and the flow rate was 0.3 mL/min. The negative electrospray ionization (ESI
Symbolm@@ ) source under the multiple reaction monitoring (MRM) mode and external standard method were used for quantification. The results showed that the correlation coefficients up to 0.9942 were obtained across a concentration range of 0.005-5.0 mg/L. The limits of detection (LOD) ranged from 0.002 to 0.005 mg/kg (S/N=3). The method was validated with soil samples spiked at three fortification levels (0.01, 0.1 and 1 mg/kg) and recoveries were in the range of 79.3%-94.8% with relative standard deviations (RSD) of 3.1%-6.6%.
KeywordsUltra performance liquid chromatography tandem mass spectrery; 2,4,6Trinitrophenol; 2,4,6Trinitroresorcinate; 2,4,6Trinitrophloroglucinol; QuEChERS method; Soil
武 杰, 曹 磊, 李英明. 色谱, 2004, 22(5): 562
11Hu C,Chen B, He M. J. Chromatogr. A, 2013, 1300: 165-172
12Elbarbry F, Wilby K, Alcorn J. J. Chromatogr. B, 2006, 834(2): 199-203
13PdillaSnchez J A, PlazaBolaos P, RomeroGonzlez R, BaracoBoniua N, MartínezVidal J L, GarridoFrenich A. Talanta, 2011, 85(5): 2397-2404
14Zhu S, Niu W, Li H. Talanta, 2009, 79(5): 1441-1445
15Allen D, Bui A D, Cain N. Anal. Bioanal. Chem., 2013, 405(30): 9869-9877
16Liu X, Yang T, Hu J. J. Chromatogr. Sci., 2013, 51(1): 87-91
17Gineys N, Giroud B, Vulliet E. Anal. Bioanal. Chem., 2010, 397(6): 2295-2302
18WU Gang, DONG SuoZhuai, PAN LuLu. Chinese Journal of Chromatography, 2013, 31(7): 697-702
吴 刚, 董锁拽, 潘璐璐. 色谱, 2013, 31(7): 697-702
19Ge X, Wu X, Liang S. J. Chromatogr. Sci., 2013, 51(11): 233-236
20XU DunMing, LU ShengYu, CHEN DaJie. Chinese Journal of Chromatography, 2013, 31(3): 218-222
徐敦明, 卢声宇, 陈达捷. 色谱, 2013, 31(3): 218-222
21Prakash Maran J, Sivakumar V, Sridhar R. Carbohydr. Polym., 2013, 97(2): 703-709
22Al Bittar S, PérinoIssartier S, Dangles O. Food Chem., 2013, 141(3): 3268-3272
23Samavati V. Int. J. Biol. Macromol., 2013, 61: 142-149
24Burdel M, andrejov J, Balogh I S. Chem. Commun (Camb)., 2012, 48(41): 5007-5009
25Li S, Li T, Gao P. J. Chromatogr. Sci., 2013, 51(9): 233-236
26MorenoGonzlez D, HuertasPérez J F, GarcíaCamtnpa A M. J. Chromatogr. A, 2013, 58(8)1315-1317
27Luzardo O P, RuizSurez N, AlmeidaGonzlez M. Anal. Bioanal. Chem., 2013, 405(29): 9523-9536
28Lega F, Contiero L, Biancotto G. Food Addit. Contam. Part A, 2013, 30(6): 949-957
29YAO MengKan, MA BingLiang, MA YueMing. Journal of Pharmaceutical Analysis, 2010, 12(5): 2436-2440
姚梦侃, 马秉亮, 马越鸣. 药物分析杂志, 2010, 12(5): 2436-2440
AbstractA simple, rapid sensitive and accurate ultra performance liquid chromatography tandem mass spectrometric (UPLCMS/MS) method was developed for the simultaneous determination of 2,4,6trinitrophenol, trinitroresorcinate, trinitrophloroglucinol residues in soil. The sample was pretreated by using the modified QuEChERS (quick, easy, cheap, effective, rigged, and safe) method that completed the extraction and cleanup steps in one procedure. In this none buffer QuEChERS method, samples were extracted with 1% formic acid + acetonitrile, cleaned up with primary graphitized carbon black (GCB) and C18 sorbent, then centrifuged and filtrated before detection. The pretreatment method was simple, rapid and effective and can meet the detection requirements. The UPLCMS/MS method was performed on Waters Accucore PFP (150 mm× 2.1 mm, 2.6 μm) and the column temperature was 30 ℃, the gradient elution with acetonitrile and ammonium acetate as the mobile phase and the flow rate was 0.3 mL/min. The negative electrospray ionization (ESI
Symbolm@@ ) source under the multiple reaction monitoring (MRM) mode and external standard method were used for quantification. The results showed that the correlation coefficients up to 0.9942 were obtained across a concentration range of 0.005-5.0 mg/L. The limits of detection (LOD) ranged from 0.002 to 0.005 mg/kg (S/N=3). The method was validated with soil samples spiked at three fortification levels (0.01, 0.1 and 1 mg/kg) and recoveries were in the range of 79.3%-94.8% with relative standard deviations (RSD) of 3.1%-6.6%.
KeywordsUltra performance liquid chromatography tandem mass spectrery; 2,4,6Trinitrophenol; 2,4,6Trinitroresorcinate; 2,4,6Trinitrophloroglucinol; QuEChERS method; Soil