纳米TiN修饰平面微电极阵列在神经信息双模检测中的应用

蒋庭君等
摘要采用氮化钛(TiN)修饰平面微电极阵列(pMEA),对其性能进行改进,开展了离体神经电生理和神经递质电化学的检测研究。采用磁控溅射法在实验室自制微电极阵列上修饰具有纳米结构的TiN材料,修饰后的微电极阻抗降低近一个数量级,背景噪声基线降至±6 μV,信噪比是修饰前的17倍。在SD大鼠离体脑片神经电生理信号检测中,信噪比可达10∶1,能分离提取±12 μV的微弱信号。神经递质多巴胺电化学信号检测下限达50 nmol/L(信噪比2∶1),浓度在005~100 μmol/L内与电流响应的线性相关系数为0998。实验结果表明,在微电极表面修饰纳米TiN,降低了微电极阻抗,提高了信噪比,实现了对神经信息微弱信号的检测。
关键词[HTSS]微电极阵列; 氮化钛修饰; 神经电生理; 神经电化学; 多巴胺
1引言
神经疾病已成为现代社会的一大隐患,其致病机理与脑部神经网络中神经信息的异常发放和传递有关。神经网络起沟通外部世界及协调机体内部活动的作用,是由大量神经元个体连接组成的复杂系统。神经元之间通过电学和化学两种模式的信号实现信息传递,通过对神经元胞外电生理检测可获取其电学信号; 对神经递质的释放进行电化学检测可获取其化学信号。因此,采用两种检测模式对神经电生理信号和递质化学信号的实时、准确和同步的探测,已成为研究和治疗神经疾病的基础\[1~4\]。
微电极阵列(MEA)为神经信息检测和记录的研究提供了一种高通量、高时空、分辨率和高灵敏度的检测器件。目前,微电极阵列主要分为平面MEA\[5,6\](Planar MEA, pMEA)、CMOS (Complementary metal oxide semiconductor)集成MEA\[7\]和3D立体MEA\[8,9\],研究的重点多为神经电生理信息的检测。pMEA制作工艺相对简单,批量制作成品率高,对其表面处理也更多样化和易于实现,可直接将细胞培养在其上,具有对神经细胞无损检测的优势,广泛应用于神经信息离体检测。对于神经细胞的胞外电生理检测,信号的幅度非常微弱(微伏量级),神经递质的释放也很微量(纳摩尔到微摩尔级),pMEA需克服因电极尺寸小造成的阻抗和热噪声增大等问题,而这些问题可通过对其表面进行纳米修饰得到改善\[10~13\]。相对于纳米铂黑、纳米铂铱和石墨烯等通过电化学沉积的电极修饰方法,用磁控溅射法修饰在电极表面的氮化钛(TiN)既能呈现出纳米结构, 又能与微电极结合牢固,可多次重复使用,且批量化成本较低。
本研究组自制的pMEA\[14\]集合了神经电生理和神经递质电化学检测的功能,为神经信息双模检测提供了一种有效工具,通过磁控溅射法修饰的纳米TiN材料与微电极结合牢固,重复使用率高,可批量制作。通过交流阻抗谱及背景噪声测试实验,考察TiN修饰pMEA的性能。采用修饰TiN的pMEA进行神经电生理检测和神经递质电化学检测实验,进一步考察其双模检测性能。
2实验部分
21仪器与材料
USBME16FAISystem型16通道滤波放大器(Multi Channel Systems公司),Autolab AUT85039型电化学工作站(Metrohm公司),M205C型体式显微镜(LEICA公司),S3500型扫描电子显微镜(Hitachi公司),LEAD1548型蠕动泵(兰格公司),实验室自制刺激器,MWD20型实验室超纯水器(美诚公司),BSA124S型电子天平(赛多利斯公司)。
多巴胺(Sigma公司),09%生理盐水(石家庄四药公司),Ag|AgCl浆(Dupont公司),人工脑脊液(ACSF):1250 mmol/L NaCl,25 mmol/L KCl,20 mmol/L CaCl2,13 mmol/L MgCl2,13 mmol/L NaH2PO4,250 mmol/L NaHCO3,250 mmol/L Glucose,13 mmol/L LSodium Ascorbate,06 mmol/L Sodium pyruvate,pH 74,持续充入含95% O2和5% CO2的混合气体。实验所用SD大鼠海马区脑片由北京大学神经科学研究所邢国刚课题组提供,所用药品试剂均为分析纯(国产),实验用水为高纯水。
22平面微电极阵列芯片制备、修饰及表征
实验使用玻璃基底,铂作为导电材料,氮化硅作为绝缘层的自制60通道分区型平面微电极阵列芯片。芯片包含微电极阵列、电极导线、外接电路触点、神经电生理检测参比电极、神经递质电化学检测参考电极和对电极,使用MEMS(Microelectromechanical Systems)技术的薄膜工艺和光刻工艺制备芯片,通过涂覆Ag|AgCl浆制备电化学参考电极,具体方法参考文献\[14\]。在修饰TiN之前, 需用氧等离子清洗去除pMEA表面可能吸附的杂质,经光刻工艺曝露待修饰部分。采用磁控溅射法在氩气与氮气流量比15∶1条件下溅射30 min,去除残胶清洗后,完成纳米TiN材料修饰。通过扫描电子显微镜(Scanning electron microscope, SEM)对微电极表面的TiN材料结构进行表征。
实验利用自制外接电路接口将pMEA与16通道滤波放大器系统相连,用生理盐水模拟检测的组织液环境,引入实验室自制刺激器产生的同一刺激脉冲信号,模拟神经电生理检测过程。通过配套软件观察记录未修饰TiN的微电极(简称裸电极)和修饰了TiN的微电极(简称TiN电极)的背景噪声数据,统计各通道均值和标准偏差,以及对同一刺激信号的响应幅值。将SD大鼠海马区脑片置于pMEA培养环内,通过显微镜观察,将其定位在相应的微电极位点上,使脑片与电极表面紧密贴覆后用脑片夹固定,通入ACSF灌流,观察记录脑片神经元的神经电生理信息。
实验采用Autolab电化学工作站作为电化学实验的检测平台,Ag|AgCl电极作为参考电极,在生理盐水中对裸电极和TiN电极进行交流阻抗谱扫描,记录阻抗谱图;在生理盐水中依次加入不同浓度多巴胺(Dopamine,DA),采用循环伏安法和计时电流法对TiN电极进行扫描,观察记录pMEA对不同浓度多巴胺溶液的响应数据。通过配套软件Nova记录实验数据,采用Origin软件拟合多次扫描数据作图。
所有测试过程均在屏蔽箱中进行,且整个测试系统良好接地,将外界噪声干扰降到最低。
交流阻抗谱是衡量电极性能的重要指标。裸电极与TiN电极的交流阻抗谱扫描对比实验如图2所示,TiN电极的阻抗在大部分实验频率范围都比裸电极的阻抗低。但在高频区域(f≥1045 Hz), TiN电极的阻抗略高于裸电极。由于本实验体系采用相同测试条件,溶液电阻近似相等,而交流阻抗包含溶液电阻、电极电阻以及电极表面双电层产生的容抗,故阻抗变化主要受后两者影响。在低频区域容抗特性占主导,金属化合物介电常数大于金属,TiN能与溶液产生更利于电子扩散的双电层,即容抗较小,因此TiN电极的阻抗小于裸电极;在高频区域电容相当于通路,电阻特性占主导,裸电极为铂金,其金属电阻率较低,因此阻抗会低于TiN电极。由于神经电生理信号的频率约为103Hz,在相应频段,TiN电极的阻抗比裸电极的降低了近一个数量级,从04 MΩ降到006 MΩ,其更利于检测电生理信号。
312背景噪声对比分析在实际检测实验中,背景噪声基线的高低直接影响探测结果的信噪比。采用pMEA在细胞外记录的神经元电活动信号信噪比通常都较低, 而且背景噪声的来源很多\[15\],主要包括环境噪声、微电极和检测系统本身的热噪声等,微电极本身的阻抗、得失电子能力等性能会直接影响其大小。
在相同条件下,使用pMEA进行模拟电生理信号检测,裸电极和TiN电极的背景噪声基线和响应信号有很大差别。当检测到信号时,修饰前后微电极各个通道的背景噪声基线数值见表1。通过对多个通道的均值对比,TiN电极的噪声基线比裸电极降低了35 μV,且各通道之间的标准偏差由18 μV降低到08 μV。对同一刺激信号,裸电极和TiN电极探测信号的能力也不同。
将离体海马区脑片置于pMEA电极位点上(图4A),选择的电极标记为1~3,电极位置对应显示在图4B中。图4C显示3个通道分别记录了1000 ms的不同时刻神经电生理信号的发放,平均背景噪声基线为±6 μV,信噪比可达10∶1。由于检测的神经细胞不同,细胞与电极的距离不同,提取出峰电位的波形也不同\[16\]。图4D显示从3个通道神经电生理活动中提取的峰电位波形图,峰电位S1, S2, S3分别对应通道1, 2, 3。峰电位S2具有典型胞外记录动作电位波形特征,先产生03 ms的负向电位,接着产生1 ms的正向电位,清楚体现了动作电位的去极化、复极化和超极化过程,因其与被测细胞胞体接触紧密具有较大幅值±60 μV。峰电位S1可能距离被测细胞较远,发放信号较弱,幅值较小,仅为±12 μV。而峰电位S3与细胞轴突接触,呈现先正后负的反向波形。在1000 ms内各通道多次记录到幅值相同的峰电位波形,说明其携带的神经信息分别来自于与其对应电极相接触的同一神经细胞上。
因为TiN修饰后的pMEA背景噪声基线较低,一些较微弱信号也能从背景噪声中分离提取出来,如图4D中幅值±12 μV的峰电位S1,若采用裸电极进行检测,较易淹没在±10 μV的背景噪声中。因此,经过TiN修饰的微电极更易于将微弱的神经电生理信号从噪声背景中提取出来,有利于对神经动作电位的检测,在离体神经电生理检测中具有更加优越的性能。[TS(]图4(A)脑片海马区置于pMEA上的显微镜图,选择电极1~3,电极位置在(B)图中显示;(C)神经元动作电位发放记录;(D)分别提取出的典型峰电位波形
Fig4(A) Microgragh of hippocampus slice mounted on pMEA The selected microelectrodes were 1~3, and the positions were shown on (B) (C) Recordings of neural spike activities (D) Three typical spike firing patterns recorded separately from the microelectrodes 1-3[HT5][TS)]
33神经递质多巴胺的电化学检测实验
为了检测修饰TiN的pMEA对神经递质的电化学响应,选用不同浓度的多巴胺溶液进行实验。首先对01~10 mmol/L的多巴胺生理盐水溶液进行循环伏安法(Cyclic voltammetry,CV)扫描(图5A),扫速为005 V/s。在05 V电压下,各浓度的循环伏安曲线已有较明显的区分,且电极响应电流与多巴胺浓度呈较好的线性关系(图5B),故选用05 V作为多巴胺在TiN电极表面的氧化电压。分别使用005~04
4结论
采用磁控溅射法在pMEA表面修饰了纳米TiN材料,修饰后交流阻抗降低近一个数量级,背景噪声基线降至±6 μV,信噪比是修饰前的17倍。开展SD大鼠离体脑片神经电生理信号的检测实验和神经递质多巴胺溶液电化学检测实验,成功获取多通道的神经细胞动作电位信息,较易提取的微弱电生理信号,在浓度范围0001~100 μmol/L的多巴胺溶液中获得氧化电流响应,信噪比为2∶1的检出限为50 nmol/L,005~100 μmol/L的氧化电流线性曲线相关系数为0998。在微电极表面修饰纳米TiN材料,增加电极的有效表面积,降低了阻抗,提高信噪比,对低浓度神经递质的有响应,在神经科学基础研究、神经疾病研究治疗和病理分析等方面具有广泛的应用前景。
References
1van Bergen A, Papanikolaou T, Schuker A, Moller A, Schlosshauer B Brain Res Protoc, 2003, 11(2): 123-133
2Exley R, Clements M A, Hartung H, Mclntosh J M, Cragg S J Neuropsychopharmacology, 2008, 33(9): 2158-2166
3Rand E, Periyakaruppan A,Tanaka Z, Zhang D A, Marsh M P, Andrews R J, Lee K H, Chen B, Meyyappan M, Koehne J E Biosens Bioelectron, 2013, 42: 434-438
4LIN NanSen, SONG YongLin, LIU ChunXiu, CAI XinXia Chinese J Anal Chem, 2011, 39(5): 770-774
林楠森, 宋轶琳, 刘春秀, 蔡新霞 分析化学, 2011, 39(5): 770-774
5Suzuki I, Sugio Y, Jimbo Y, Yasuda K Lab Chip, 2005, 5(3): 241-247
6Liu C X, Song Y L, Lin N S, Zhou S, Wang M X, Cai X X J Nanosci Nanotechnol, 2013, 13(2): 736-740
7Huys R, Braeken D, Jans D, Stassen A, Collaert N, Wouters J, Loo J, Severi S, Vleugels F, Callewaert G, Verstreken K, Bartic C, Eberle W Lab Chip, 2012, 12(7): 1274-1280
8Kibler A B, Jamieson B G, Durand D M J Neurosci Methods, 2012, 204(2): 296-305
9Charvet G, Rousseau L, Billoint O, Gharbi S, Rostaing J P, Joucla, S, Trevisiol M, Moulin C, Goy F, Mercier B, Colin M, Spirkovitch S, Fanet H, Meyrand P, Guillemaud R, Yvert B Biosens Bioelectron, 2010, 25(8): 1889-1896
10Cui X Y, Martin D C Sens Actuators B: Chem, 2003, 89(12): 92-102
11Cogan S F Annu Rev Biomed Eng, 2008, 10: 275-309
12Raj C R, Ohsaka T J Electroanal Chem, 2001, 496(12): 44-49
13Petrossians A, Whalen J J 3rd, Weiland J D, Mansfeld F Conf Proc IEEE Eng Med Biol Soc, 2011: 3001-3004
14Jiang T J, Liu C X, Xu S W, Song Y L, Lin N S, Shi W T, Cai X X Conf Proc IEEE Nano/Micro Eng Mol Sys, 2013: 436-439
15Musial P G, Baker S N, Gerstein G L, King E A, Keating J G J Neurosci Methods, 2002, 115(1): 29-43
16Regehr W G, Pine J, Cohan C S, Mischke M D, Tank D W J Neurosci Methods, 1989, 30(2): 91-106
AbstractThe nanostructure TiN was modified on the laboratory selfmade planar microelectrode array pMEA by magnetron sputtering method The performance of modified pMEA was investigated Research on neuroelectrical and neurochemical recording was studied in vitro The impedance of the modified pMEA was decreased almost one order of magnitude, and the background noise level was reduced to ±6 μV In the same testing environment, the signaltonoise ratio (SNR) of modified electrodes was 17 times of bare electrodes The SNR of neuroelectrical recording on the brain slice of SD rats reached 10∶1, and the weak signal such as ±12 μV was separated easily For neuroelectrical recordings, the detection limit of dopamine (DA) solution reached 50 nmol/L with the 2∶1 (S/N) During the concentration range of 005-100 μmol/L, the linearly correlation coefficient of the DA oxidation currents was 0998 The modification of nanostructure TiN on pMEA reduced pMEA impedance and background noise level, meanwhile the SNR was increased The weak signals of neuroelectrical and neurochemical recording were successfully recorded
KeywordsMicroelectrode array; Titanium nitride; Neuroeletrical; Neurochemical; Dopamine
References
1van Bergen A, Papanikolaou T, Schuker A, Moller A, Schlosshauer B Brain Res Protoc, 2003, 11(2): 123-133
2Exley R, Clements M A, Hartung H, Mclntosh J M, Cragg S J Neuropsychopharmacology, 2008, 33(9): 2158-2166
3Rand E, Periyakaruppan A,Tanaka Z, Zhang D A, Marsh M P, Andrews R J, Lee K H, Chen B, Meyyappan M, Koehne J E Biosens Bioelectron, 2013, 42: 434-438
4LIN NanSen, SONG YongLin, LIU ChunXiu, CAI XinXia Chinese J Anal Chem, 2011, 39(5): 770-774
林楠森, 宋轶琳, 刘春秀, 蔡新霞 分析化学, 2011, 39(5): 770-774
5Suzuki I, Sugio Y, Jimbo Y, Yasuda K Lab Chip, 2005, 5(3): 241-247
6Liu C X, Song Y L, Lin N S, Zhou S, Wang M X, Cai X X J Nanosci Nanotechnol, 2013, 13(2): 736-740
7Huys R, Braeken D, Jans D, Stassen A, Collaert N, Wouters J, Loo J, Severi S, Vleugels F, Callewaert G, Verstreken K, Bartic C, Eberle W Lab Chip, 2012, 12(7): 1274-1280
8Kibler A B, Jamieson B G, Durand D M J Neurosci Methods, 2012, 204(2): 296-305
9Charvet G, Rousseau L, Billoint O, Gharbi S, Rostaing J P, Joucla, S, Trevisiol M, Moulin C, Goy F, Mercier B, Colin M, Spirkovitch S, Fanet H, Meyrand P, Guillemaud R, Yvert B Biosens Bioelectron, 2010, 25(8): 1889-1896
10Cui X Y, Martin D C Sens Actuators B: Chem, 2003, 89(12): 92-102
11Cogan S F Annu Rev Biomed Eng, 2008, 10: 275-309
12Raj C R, Ohsaka T J Electroanal Chem, 2001, 496(12): 44-49
13Petrossians A, Whalen J J 3rd, Weiland J D, Mansfeld F Conf Proc IEEE Eng Med Biol Soc, 2011: 3001-3004
14Jiang T J, Liu C X, Xu S W, Song Y L, Lin N S, Shi W T, Cai X X Conf Proc IEEE Nano/Micro Eng Mol Sys, 2013: 436-439
15Musial P G, Baker S N, Gerstein G L, King E A, Keating J G J Neurosci Methods, 2002, 115(1): 29-43
16Regehr W G, Pine J, Cohan C S, Mischke M D, Tank D W J Neurosci Methods, 1989, 30(2): 91-106
AbstractThe nanostructure TiN was modified on the laboratory selfmade planar microelectrode array pMEA by magnetron sputtering method The performance of modified pMEA was investigated Research on neuroelectrical and neurochemical recording was studied in vitro The impedance of the modified pMEA was decreased almost one order of magnitude, and the background noise level was reduced to ±6 μV In the same testing environment, the signaltonoise ratio (SNR) of modified electrodes was 17 times of bare electrodes The SNR of neuroelectrical recording on the brain slice of SD rats reached 10∶1, and the weak signal such as ±12 μV was separated easily For neuroelectrical recordings, the detection limit of dopamine (DA) solution reached 50 nmol/L with the 2∶1 (S/N) During the concentration range of 005-100 μmol/L, the linearly correlation coefficient of the DA oxidation currents was 0998 The modification of nanostructure TiN on pMEA reduced pMEA impedance and background noise level, meanwhile the SNR was increased The weak signals of neuroelectrical and neurochemical recording were successfully recorded
KeywordsMicroelectrode array; Titanium nitride; Neuroeletrical; Neurochemical; Dopamine
References
1van Bergen A, Papanikolaou T, Schuker A, Moller A, Schlosshauer B Brain Res Protoc, 2003, 11(2): 123-133
2Exley R, Clements M A, Hartung H, Mclntosh J M, Cragg S J Neuropsychopharmacology, 2008, 33(9): 2158-2166
3Rand E, Periyakaruppan A,Tanaka Z, Zhang D A, Marsh M P, Andrews R J, Lee K H, Chen B, Meyyappan M, Koehne J E Biosens Bioelectron, 2013, 42: 434-438
4LIN NanSen, SONG YongLin, LIU ChunXiu, CAI XinXia Chinese J Anal Chem, 2011, 39(5): 770-774
林楠森, 宋轶琳, 刘春秀, 蔡新霞 分析化学, 2011, 39(5): 770-774
5Suzuki I, Sugio Y, Jimbo Y, Yasuda K Lab Chip, 2005, 5(3): 241-247
6Liu C X, Song Y L, Lin N S, Zhou S, Wang M X, Cai X X J Nanosci Nanotechnol, 2013, 13(2): 736-740
7Huys R, Braeken D, Jans D, Stassen A, Collaert N, Wouters J, Loo J, Severi S, Vleugels F, Callewaert G, Verstreken K, Bartic C, Eberle W Lab Chip, 2012, 12(7): 1274-1280
8Kibler A B, Jamieson B G, Durand D M J Neurosci Methods, 2012, 204(2): 296-305
9Charvet G, Rousseau L, Billoint O, Gharbi S, Rostaing J P, Joucla, S, Trevisiol M, Moulin C, Goy F, Mercier B, Colin M, Spirkovitch S, Fanet H, Meyrand P, Guillemaud R, Yvert B Biosens Bioelectron, 2010, 25(8): 1889-1896
10Cui X Y, Martin D C Sens Actuators B: Chem, 2003, 89(12): 92-102
11Cogan S F Annu Rev Biomed Eng, 2008, 10: 275-309
12Raj C R, Ohsaka T J Electroanal Chem, 2001, 496(12): 44-49
13Petrossians A, Whalen J J 3rd, Weiland J D, Mansfeld F Conf Proc IEEE Eng Med Biol Soc, 2011: 3001-3004
14Jiang T J, Liu C X, Xu S W, Song Y L, Lin N S, Shi W T, Cai X X Conf Proc IEEE Nano/Micro Eng Mol Sys, 2013: 436-439
15Musial P G, Baker S N, Gerstein G L, King E A, Keating J G J Neurosci Methods, 2002, 115(1): 29-43
16Regehr W G, Pine J, Cohan C S, Mischke M D, Tank D W J Neurosci Methods, 1989, 30(2): 91-106
AbstractThe nanostructure TiN was modified on the laboratory selfmade planar microelectrode array pMEA by magnetron sputtering method The performance of modified pMEA was investigated Research on neuroelectrical and neurochemical recording was studied in vitro The impedance of the modified pMEA was decreased almost one order of magnitude, and the background noise level was reduced to ±6 μV In the same testing environment, the signaltonoise ratio (SNR) of modified electrodes was 17 times of bare electrodes The SNR of neuroelectrical recording on the brain slice of SD rats reached 10∶1, and the weak signal such as ±12 μV was separated easily For neuroelectrical recordings, the detection limit of dopamine (DA) solution reached 50 nmol/L with the 2∶1 (S/N) During the concentration range of 005-100 μmol/L, the linearly correlation coefficient of the DA oxidation currents was 0998 The modification of nanostructure TiN on pMEA reduced pMEA impedance and background noise level, meanwhile the SNR was increased The weak signals of neuroelectrical and neurochemical recording were successfully recorded
KeywordsMicroelectrode array; Titanium nitride; Neuroeletrical; Neurochemical; Dopamine
相关文章!
  • 改进演示实验,提高演示实验教

    曹雪梅众所周知,化学是以实验为基础的学科.实验是化学的灵魂,也是提高学生学习兴趣的主要因素.教学实践证明,化学实验教学可以让学生

  • 素质教育在中职教育中的重要性

    杨天摘要:进入21世纪之后,素质教育已经成为全社会非常关注的一个重要话题。而在职业教育中,许多学生和家长错误的认为职业教育的本质就

  • 质谱法测定水中溶解氙的含量及

    李军杰+刘汉彬 张佳+韩娟+金贵善+张建锋<br />
    <br />
    <br />
    <br />
    摘要 利用设计的一套水样中提取并分离Xe的装置,与稀有气体质谱