加速溶剂萃取高效液相色谱串联质谱法测定土壤中邻苯二甲酸酯
闫蕊等
摘 要 建立了高效液相色谱串联质谱技术(Liquid chromatography tandem mass spectrometry, LC MS/MS)同时测定土壤中邻苯二甲酸酯(Phthalic acid esters, PAEs)的分析方法。确定了土壤样品加速溶剂萃取最优条件是以正己烷为萃取溶剂,在160 ℃下,静态萃取4次,每次12 min,萃取液经旋转蒸发浓缩,以乙腈0.1%甲酸溶液为流动相梯度洗脱分离后, 用LCMS/MS结合大气压化学源(Atmospheric pressure chemical ionization, APCI)进行定性及定量分析。土壤中11种PAEs的浓度与其峰面积呈良好的线性关系,检出限为0.03~13.0 μg/kg,样品的加标平均回收率为72.8%~101.8%,相对标准偏差(RSD)为1.7%~6.7%。方法简便快速,且灵敏度高,适用于土壤中11种邻苯二甲酸酯的同时测定。
关键词 加速溶剂萃取; 高效液相色谱串联质谱法; 大气压化学源; 土壤; 邻苯二甲酸酯
1 引 言
邻苯二甲酸酯 (Phthalic acid esters, PAEs) 是环境激素类物质中的一类化合物。它们主要用作增塑剂[1],在塑料中, PAEs与聚烯烃类塑料分子之间由氢键或范德华力连接,彼此保留各自相对独立的化学性质[2],随着工业生产和塑料制品的使用,PAEs不断进入环境,普遍存在于土壤、底泥、生物等环境样品中。杜娴等[3]的研究表明,由于生物或物理化学过程,PAEs在水体之间存在迁移分配的现象,也就是说虽然PEAs具有憎水性,易富集与沉积物中,但当外界条件合适的情况下,PEAs还是有向水中迁移的趋势。张蕴晖等[4]的研究表明,PAEs在环境中的含量为:水<土壤<底泥<水生生物。关卉等[5]的研究表明,PAEs总量高低排序为:甘蔗地>水田>菜地>果园,不同土壤剖面层次PAEs残留总量总体上随着深度的增加呈下降趋势。PEAs可经过消化系统、呼吸系统及皮肤接触等途径进入人体[6],PAEs的毒性除了已知的致畸、致癌和致突变外,还将影响人体内分泌。徐廷云等[7]的研究表明,不育男性的精液中PAEs的总量高于正常生育男性,得出PAEs蓄积可能是男性不育的原因之一的结论。
土壤中PAEs的前处理较多的使用索氏萃取[8]、超声萃取[9]和微波萃取[10]等方法,而近几年发展起来的加速溶剂萃取法则具有有机溶剂用量少、操作自动化、萃取速度快、回收率高等优点[11~14]。PAEs的测定可以采用高效液相色谱法[15,16]、气相色谱法[17]、气相色谱质谱联用(GCMS)法[18]和液相色谱串联质谱联用(LCMS/MS)法[19]。由于环境样品基质复杂,污染物较多,色谱法根据保留时间进行定性分析经常受到基质的干扰,容易造成假阳性。采用串联质谱法可以很大程度去除基质干扰,较为准确地进行定性和定量分析。
本研究采用加速溶剂萃取高效液相色谱串联大气压化学电离源质谱法,对11种PAEs同时进行分离检测,建立了一种前处理简便、有机溶剂用量少、周期短的检测方法。
2 实验部分
2.1 仪器与试剂
Agilent 1200高效液相色谱仪,Agilent 6410A串联四极杆质谱仪,配大气压化学电离源(APCI)和Mass Hunter工作站(美国Agilent公司);ASE350型加速溶剂萃取仪(美国Dionex公司),配10 mL萃取池;N1000型旋转蒸发仪(日本Eyela公司),配有BC55型真空冷却系统(日本Yamato公司);MilliQ超纯水器(美国Millipore公司)。乙腈、二氯甲烷、丙酮、异丙醇、石油醚及正己烷(HPLC级,美国Fisher公司);氟罗里硅藻土(0.180~0.154 mm粒径,农残级,Dionex公司);0.22 μm有机微孔过滤膜;玻璃容器依次用水、丙酮、正己烷、二氯甲烷清洗,200 ℃烘10 h以上,氟罗里硅藻土200 ℃烘24 h。实验中避免使用任何塑料器皿。
邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二(2甲氧基)乙酯(DMEP)、邻苯二甲酸二乙氧基己酯(DEEP)、邻苯二甲酸二乙酯(DEP)、邻苯二甲酸二丙烯酯(DAP)、邻苯二甲酸二(2丁氧基)乙酯(DBEP)、邻苯二甲酸丁基苄酯(BBP)、邻苯二甲酸二环己酯(DCHP)、邻苯二甲酸二戊酯(DPP)、邻苯二甲酸二(4甲基2戊基)酯(BMPP)、邻苯二甲酸己基2乙基己基酯(HEHP)(纯度大于95.1%)购自Dr. Ehrenstorfer GmbH 公司。
2.2 色谱质谱条件
Agilent XDBC18色谱柱(250 mm×4.6 mm,5 μm);流动相:0.1%甲酸(A)和乙腈(B),梯度洗脱程序:0~35 min,60%~90% B;35~37 min,90%~60% B;37~40 min,60% B。流速:1.0 mL/min;柱温:30 ℃;进样量:10.0 μL;后运行时间:5 min;大气压化学电离源(APCI);正离子模式;干燥气流速: 5.0 L/min; 干燥气温度:350 ℃;喷雾器温度:400 ℃;喷雾器压力:
4 结 论
采用加速溶剂萃取液相色谱串联质谱法对土壤样品中11种邻苯二甲酸酯进行分析测定。对萃取条件进行了优化,并分析了实际样品,PAEs的浓度与其峰面积呈良好的线性关系,检出限为0.03~13.0 μg/kg,样品的加标回收率为72.8%~101.8%,相对标准偏差为1.7%~6.7%。本方法简单快速,且灵敏度高,适用于土壤中11种邻苯二甲酸酯的同时测定。
References
1 Atlas E, Giam C S. Science, 1981, 21(1) : 163-165
2 Klamsmeier R E. Microbial Biodeterioration, London: Academic Press, 1981: 431-474
3 DU Xian, LUO GuYuan, XU XiaoYi. Acta Scientice Circumstantiace, 2013,33(2): 557-562
杜 娴, 罗固源, 许晓毅. 环境科学学报, 2013, 33(2): 557-562
4 ZHANG YunHui, CHEN BingHeng, ZHENG LiXing, ZHU JianHui, DING XunChen. Journal of Environment and Health, 2003, 20(5): 283-286
张蕴晖, 陈秉衡, 郑力行, 褚建辉, 丁训诚. 环境与健康杂志, 2003, 20(5): 283-286
5 GUAN Hui, WANG JiSheng, WAN HongFu, LI PeiXue. Journal of AgroEnvironment Science, 2007, 26(2): 622-628
关 卉, 王金生, 万洪富, 李丕学, 杨国义. 农业环境科学学报, 2007, 26(2): 622-628
6 JIN QiuMei, SUN ZengRong. Journal of Tianjin Medical University, 2004, (S1): 81-85
靳秋梅, 孙增荣. 天津医科大学学报, 2004(增刊1): 81-85
7 XUN TingYun, HU JiaBo, GAO HuaSheng, WU ZhiYuan, XU WenHui. Chinese Journal of Clinical Laboratory Science, 2013, 31(1): 51-53
徐廷云, 胡嘉波, 高华生, 吴芝园, 徐文慧. 临床检验杂志, 2013, 31(1): 51-53
8 MO CeHui, CAI QuanYing, WU QiTang, WANG BoGuang, HUANG HuanZhong, ZHOU LiXiang. China Environmental Science, 2001, 21(4): 362-366
莫测辉, 蔡全英, 吴启堂, 王伯光, 黄焕忠, 周立祥. 中国环境科学, 2001, 21(4): 362-366
9 MENG PinRui, WANG XiKui, WANG XiaoMei, TAN CaiJuan. Journal of Instrumental Analysis, 1995, 14(1): 42
孟平蕊, 王西奎 , 王筱梅, 覃彩娟. 分析测试学报, 1995, 14(1): 42
10 Cortazar E, Bartolomé L, Delgado A. Anal. Chim. Acta, 2005, 534(2): 247-254
11 SHAO HaiYang, XU Gang, WU MingHong, TANG Liang, LIU Ning, QIU WenHui. Chinese J. Anal. Chem., 2013, 41(9): 1315-1321
邵海洋, 徐 刚, 吴明红, 唐 亮, 刘 宁, 裘文慧. 分析化学, 2013, 41(9): 1315-1321
12 Jara S, Lysebo C, Greibrokk T, Lundanes E. Anal. Chim. Acta, 2000, 407(12): 165-171
13 YAN Rui, SHAO MingYuan, JU FuLong, SONG DaQian, ZHANG HanQi, YU AiMin. Chinese J. Anal. Chem., 2013, 41(2) : 315-316
闫 蕊, 邵明媛, 鞠福龙, 宋大千, 张寒琦, 于爱民. 分析化学, 2013, 41(2): 315-316
14 Wang P, Zhang Q H, Wang Y W. Anal. Chim. Acta, 2010, 663(1): 43-48
15 Wang W T, MengB J, Lu X X. J. Chromatogr. A, 1997, 765(1): 121-125
16 YIN XueYan, XU Qian,WANG Min,WU ShuYan, GU ZhongZe. Chem. J. Chinese Universities, 2010, 31(4): 690-695
殷雪琰, 许 茜, 王 敏, 吴淑艳, 顾忠泽. 高等学校化学学报, 2010, 31(4): 690-695
17 LI LiZhong, CUI LongZhe, SUN Jie, LIU ZiYuan. Environmental Science and Technology, 2005, 28(4): 54-57
李立忠, 崔龙哲, 孙 杰, 刘子元. 环境科学与技术, 2005, 28(4): 54-57
18 Feng Y L, Zhu J P, Robert S. Anal. Chim. Acta, 2005, 538(12): 41-48
19 Alberto Z G, Oscar B, Alberto N, José L V. Microchemical Journal, 2008, 88(1): 87-94
Determination of 11 Phthalic Acid Esters in Soil by Accelerated
Solvent ExtractionLiquid Chromatography Tandem Mass Spectrometry
YAN Rui1,2, SHAO MingYuan1, SUN ChangHua2, LIU XiaoLing2,
SONG DaQian1, ZHANG HanQi1, YU AiMin*1
1(College of Chemistry, Jilin University, Changchun 130012, China)
2(Academy of Quality Inspection and Research in Heilongjiang Province, Harbin 150050, China)
Abstract A sensitive and convenient method based on accelerated solvent extraction (ASE)liquid chromatography tandem mass spectrometry (LCMS/MS) was established for the simultaneous determination of 11 phthalic acid esters(PAEs) in soil. The optimized conditions were as follows: By using nhexane as the extraction solvent, spiked sample was extracted by ASE at 160 ℃ for 4 times, 12 min for each time. The extract was concentrated by evaporation. Qualitative and quantitative analysis was carried out by the multiple reaction monitoring mode after the chromatographic separation with atmospheric pressure chemical ionization(APCI), using acetonitrile
Symbolm@@ 0.1% formic acid water as mobile phase. The limits of detection(LODs) for 11 PAEs were between 0.03-13.0 μg/kg. The recoveries and relative standard deviations were 72.8%-101.8% and 1.7-6.7%, respectively. This method is rapid, sensitive and suitable for the determination of PAEs in soil.
Keywords Accelerated solvent extraction; Liquid chromatography tandem mass spectrometry; Atmospheric pressure chemical ionization; Soil; Phthalic acid esters
(Received 24 September 2013; accepted 7 February 2014)
Determination of 11 Phthalic Acid Esters in Soil by Accelerated
Solvent ExtractionLiquid Chromatography Tandem Mass Spectrometry
YAN Rui1,2, SHAO MingYuan1, SUN ChangHua2, LIU XiaoLing2,
SONG DaQian1, ZHANG HanQi1, YU AiMin*1
1(College of Chemistry, Jilin University, Changchun 130012, China)
2(Academy of Quality Inspection and Research in Heilongjiang Province, Harbin 150050, China)
Abstract A sensitive and convenient method based on accelerated solvent extraction (ASE)liquid chromatography tandem mass spectrometry (LCMS/MS) was established for the simultaneous determination of 11 phthalic acid esters(PAEs) in soil. The optimized conditions were as follows: By using nhexane as the extraction solvent, spiked sample was extracted by ASE at 160 ℃ for 4 times, 12 min for each time. The extract was concentrated by evaporation. Qualitative and quantitative analysis was carried out by the multiple reaction monitoring mode after the chromatographic separation with atmospheric pressure chemical ionization(APCI), using acetonitrile
Symbolm@@ 0.1% formic acid water as mobile phase. The limits of detection(LODs) for 11 PAEs were between 0.03-13.0 μg/kg. The recoveries and relative standard deviations were 72.8%-101.8% and 1.7-6.7%, respectively. This method is rapid, sensitive and suitable for the determination of PAEs in soil.
Keywords Accelerated solvent extraction; Liquid chromatography tandem mass spectrometry; Atmospheric pressure chemical ionization; Soil; Phthalic acid esters
(Received 24 September 2013; accepted 7 February 2014)
Determination of 11 Phthalic Acid Esters in Soil by Accelerated
Solvent ExtractionLiquid Chromatography Tandem Mass Spectrometry
YAN Rui1,2, SHAO MingYuan1, SUN ChangHua2, LIU XiaoLing2,
SONG DaQian1, ZHANG HanQi1, YU AiMin*1
1(College of Chemistry, Jilin University, Changchun 130012, China)
2(Academy of Quality Inspection and Research in Heilongjiang Province, Harbin 150050, China)
Abstract A sensitive and convenient method based on accelerated solvent extraction (ASE)liquid chromatography tandem mass spectrometry (LCMS/MS) was established for the simultaneous determination of 11 phthalic acid esters(PAEs) in soil. The optimized conditions were as follows: By using nhexane as the extraction solvent, spiked sample was extracted by ASE at 160 ℃ for 4 times, 12 min for each time. The extract was concentrated by evaporation. Qualitative and quantitative analysis was carried out by the multiple reaction monitoring mode after the chromatographic separation with atmospheric pressure chemical ionization(APCI), using acetonitrile
Symbolm@@ 0.1% formic acid water as mobile phase. The limits of detection(LODs) for 11 PAEs were between 0.03-13.0 μg/kg. The recoveries and relative standard deviations were 72.8%-101.8% and 1.7-6.7%, respectively. This method is rapid, sensitive and suitable for the determination of PAEs in soil.
Keywords Accelerated solvent extraction; Liquid chromatography tandem mass spectrometry; Atmospheric pressure chemical ionization; Soil; Phthalic acid esters
(Received 24 September 2013; accepted 7 February 2014)
摘 要 建立了高效液相色谱串联质谱技术(Liquid chromatography tandem mass spectrometry, LC MS/MS)同时测定土壤中邻苯二甲酸酯(Phthalic acid esters, PAEs)的分析方法。确定了土壤样品加速溶剂萃取最优条件是以正己烷为萃取溶剂,在160 ℃下,静态萃取4次,每次12 min,萃取液经旋转蒸发浓缩,以乙腈0.1%甲酸溶液为流动相梯度洗脱分离后, 用LCMS/MS结合大气压化学源(Atmospheric pressure chemical ionization, APCI)进行定性及定量分析。土壤中11种PAEs的浓度与其峰面积呈良好的线性关系,检出限为0.03~13.0 μg/kg,样品的加标平均回收率为72.8%~101.8%,相对标准偏差(RSD)为1.7%~6.7%。方法简便快速,且灵敏度高,适用于土壤中11种邻苯二甲酸酯的同时测定。
关键词 加速溶剂萃取; 高效液相色谱串联质谱法; 大气压化学源; 土壤; 邻苯二甲酸酯
1 引 言
邻苯二甲酸酯 (Phthalic acid esters, PAEs) 是环境激素类物质中的一类化合物。它们主要用作增塑剂[1],在塑料中, PAEs与聚烯烃类塑料分子之间由氢键或范德华力连接,彼此保留各自相对独立的化学性质[2],随着工业生产和塑料制品的使用,PAEs不断进入环境,普遍存在于土壤、底泥、生物等环境样品中。杜娴等[3]的研究表明,由于生物或物理化学过程,PAEs在水体之间存在迁移分配的现象,也就是说虽然PEAs具有憎水性,易富集与沉积物中,但当外界条件合适的情况下,PEAs还是有向水中迁移的趋势。张蕴晖等[4]的研究表明,PAEs在环境中的含量为:水<土壤<底泥<水生生物。关卉等[5]的研究表明,PAEs总量高低排序为:甘蔗地>水田>菜地>果园,不同土壤剖面层次PAEs残留总量总体上随着深度的增加呈下降趋势。PEAs可经过消化系统、呼吸系统及皮肤接触等途径进入人体[6],PAEs的毒性除了已知的致畸、致癌和致突变外,还将影响人体内分泌。徐廷云等[7]的研究表明,不育男性的精液中PAEs的总量高于正常生育男性,得出PAEs蓄积可能是男性不育的原因之一的结论。
土壤中PAEs的前处理较多的使用索氏萃取[8]、超声萃取[9]和微波萃取[10]等方法,而近几年发展起来的加速溶剂萃取法则具有有机溶剂用量少、操作自动化、萃取速度快、回收率高等优点[11~14]。PAEs的测定可以采用高效液相色谱法[15,16]、气相色谱法[17]、气相色谱质谱联用(GCMS)法[18]和液相色谱串联质谱联用(LCMS/MS)法[19]。由于环境样品基质复杂,污染物较多,色谱法根据保留时间进行定性分析经常受到基质的干扰,容易造成假阳性。采用串联质谱法可以很大程度去除基质干扰,较为准确地进行定性和定量分析。
本研究采用加速溶剂萃取高效液相色谱串联大气压化学电离源质谱法,对11种PAEs同时进行分离检测,建立了一种前处理简便、有机溶剂用量少、周期短的检测方法。
2 实验部分
2.1 仪器与试剂
Agilent 1200高效液相色谱仪,Agilent 6410A串联四极杆质谱仪,配大气压化学电离源(APCI)和Mass Hunter工作站(美国Agilent公司);ASE350型加速溶剂萃取仪(美国Dionex公司),配10 mL萃取池;N1000型旋转蒸发仪(日本Eyela公司),配有BC55型真空冷却系统(日本Yamato公司);MilliQ超纯水器(美国Millipore公司)。乙腈、二氯甲烷、丙酮、异丙醇、石油醚及正己烷(HPLC级,美国Fisher公司);氟罗里硅藻土(0.180~0.154 mm粒径,农残级,Dionex公司);0.22 μm有机微孔过滤膜;玻璃容器依次用水、丙酮、正己烷、二氯甲烷清洗,200 ℃烘10 h以上,氟罗里硅藻土200 ℃烘24 h。实验中避免使用任何塑料器皿。
邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二(2甲氧基)乙酯(DMEP)、邻苯二甲酸二乙氧基己酯(DEEP)、邻苯二甲酸二乙酯(DEP)、邻苯二甲酸二丙烯酯(DAP)、邻苯二甲酸二(2丁氧基)乙酯(DBEP)、邻苯二甲酸丁基苄酯(BBP)、邻苯二甲酸二环己酯(DCHP)、邻苯二甲酸二戊酯(DPP)、邻苯二甲酸二(4甲基2戊基)酯(BMPP)、邻苯二甲酸己基2乙基己基酯(HEHP)(纯度大于95.1%)购自Dr. Ehrenstorfer GmbH 公司。
2.2 色谱质谱条件
Agilent XDBC18色谱柱(250 mm×4.6 mm,5 μm);流动相:0.1%甲酸(A)和乙腈(B),梯度洗脱程序:0~35 min,60%~90% B;35~37 min,90%~60% B;37~40 min,60% B。流速:1.0 mL/min;柱温:30 ℃;进样量:10.0 μL;后运行时间:5 min;大气压化学电离源(APCI);正离子模式;干燥气流速: 5.0 L/min; 干燥气温度:350 ℃;喷雾器温度:400 ℃;喷雾器压力:
4 结 论
采用加速溶剂萃取液相色谱串联质谱法对土壤样品中11种邻苯二甲酸酯进行分析测定。对萃取条件进行了优化,并分析了实际样品,PAEs的浓度与其峰面积呈良好的线性关系,检出限为0.03~13.0 μg/kg,样品的加标回收率为72.8%~101.8%,相对标准偏差为1.7%~6.7%。本方法简单快速,且灵敏度高,适用于土壤中11种邻苯二甲酸酯的同时测定。
References
1 Atlas E, Giam C S. Science, 1981, 21(1) : 163-165
2 Klamsmeier R E. Microbial Biodeterioration, London: Academic Press, 1981: 431-474
3 DU Xian, LUO GuYuan, XU XiaoYi. Acta Scientice Circumstantiace, 2013,33(2): 557-562
杜 娴, 罗固源, 许晓毅. 环境科学学报, 2013, 33(2): 557-562
4 ZHANG YunHui, CHEN BingHeng, ZHENG LiXing, ZHU JianHui, DING XunChen. Journal of Environment and Health, 2003, 20(5): 283-286
张蕴晖, 陈秉衡, 郑力行, 褚建辉, 丁训诚. 环境与健康杂志, 2003, 20(5): 283-286
5 GUAN Hui, WANG JiSheng, WAN HongFu, LI PeiXue. Journal of AgroEnvironment Science, 2007, 26(2): 622-628
关 卉, 王金生, 万洪富, 李丕学, 杨国义. 农业环境科学学报, 2007, 26(2): 622-628
6 JIN QiuMei, SUN ZengRong. Journal of Tianjin Medical University, 2004, (S1): 81-85
靳秋梅, 孙增荣. 天津医科大学学报, 2004(增刊1): 81-85
7 XUN TingYun, HU JiaBo, GAO HuaSheng, WU ZhiYuan, XU WenHui. Chinese Journal of Clinical Laboratory Science, 2013, 31(1): 51-53
徐廷云, 胡嘉波, 高华生, 吴芝园, 徐文慧. 临床检验杂志, 2013, 31(1): 51-53
8 MO CeHui, CAI QuanYing, WU QiTang, WANG BoGuang, HUANG HuanZhong, ZHOU LiXiang. China Environmental Science, 2001, 21(4): 362-366
莫测辉, 蔡全英, 吴启堂, 王伯光, 黄焕忠, 周立祥. 中国环境科学, 2001, 21(4): 362-366
9 MENG PinRui, WANG XiKui, WANG XiaoMei, TAN CaiJuan. Journal of Instrumental Analysis, 1995, 14(1): 42
孟平蕊, 王西奎 , 王筱梅, 覃彩娟. 分析测试学报, 1995, 14(1): 42
10 Cortazar E, Bartolomé L, Delgado A. Anal. Chim. Acta, 2005, 534(2): 247-254
11 SHAO HaiYang, XU Gang, WU MingHong, TANG Liang, LIU Ning, QIU WenHui. Chinese J. Anal. Chem., 2013, 41(9): 1315-1321
邵海洋, 徐 刚, 吴明红, 唐 亮, 刘 宁, 裘文慧. 分析化学, 2013, 41(9): 1315-1321
12 Jara S, Lysebo C, Greibrokk T, Lundanes E. Anal. Chim. Acta, 2000, 407(12): 165-171
13 YAN Rui, SHAO MingYuan, JU FuLong, SONG DaQian, ZHANG HanQi, YU AiMin. Chinese J. Anal. Chem., 2013, 41(2) : 315-316
闫 蕊, 邵明媛, 鞠福龙, 宋大千, 张寒琦, 于爱民. 分析化学, 2013, 41(2): 315-316
14 Wang P, Zhang Q H, Wang Y W. Anal. Chim. Acta, 2010, 663(1): 43-48
15 Wang W T, MengB J, Lu X X. J. Chromatogr. A, 1997, 765(1): 121-125
16 YIN XueYan, XU Qian,WANG Min,WU ShuYan, GU ZhongZe. Chem. J. Chinese Universities, 2010, 31(4): 690-695
殷雪琰, 许 茜, 王 敏, 吴淑艳, 顾忠泽. 高等学校化学学报, 2010, 31(4): 690-695
17 LI LiZhong, CUI LongZhe, SUN Jie, LIU ZiYuan. Environmental Science and Technology, 2005, 28(4): 54-57
李立忠, 崔龙哲, 孙 杰, 刘子元. 环境科学与技术, 2005, 28(4): 54-57
18 Feng Y L, Zhu J P, Robert S. Anal. Chim. Acta, 2005, 538(12): 41-48
19 Alberto Z G, Oscar B, Alberto N, José L V. Microchemical Journal, 2008, 88(1): 87-94
Determination of 11 Phthalic Acid Esters in Soil by Accelerated
Solvent ExtractionLiquid Chromatography Tandem Mass Spectrometry
YAN Rui1,2, SHAO MingYuan1, SUN ChangHua2, LIU XiaoLing2,
SONG DaQian1, ZHANG HanQi1, YU AiMin*1
1(College of Chemistry, Jilin University, Changchun 130012, China)
2(Academy of Quality Inspection and Research in Heilongjiang Province, Harbin 150050, China)
Abstract A sensitive and convenient method based on accelerated solvent extraction (ASE)liquid chromatography tandem mass spectrometry (LCMS/MS) was established for the simultaneous determination of 11 phthalic acid esters(PAEs) in soil. The optimized conditions were as follows: By using nhexane as the extraction solvent, spiked sample was extracted by ASE at 160 ℃ for 4 times, 12 min for each time. The extract was concentrated by evaporation. Qualitative and quantitative analysis was carried out by the multiple reaction monitoring mode after the chromatographic separation with atmospheric pressure chemical ionization(APCI), using acetonitrile
Symbolm@@ 0.1% formic acid water as mobile phase. The limits of detection(LODs) for 11 PAEs were between 0.03-13.0 μg/kg. The recoveries and relative standard deviations were 72.8%-101.8% and 1.7-6.7%, respectively. This method is rapid, sensitive and suitable for the determination of PAEs in soil.
Keywords Accelerated solvent extraction; Liquid chromatography tandem mass spectrometry; Atmospheric pressure chemical ionization; Soil; Phthalic acid esters
(Received 24 September 2013; accepted 7 February 2014)
Determination of 11 Phthalic Acid Esters in Soil by Accelerated
Solvent ExtractionLiquid Chromatography Tandem Mass Spectrometry
YAN Rui1,2, SHAO MingYuan1, SUN ChangHua2, LIU XiaoLing2,
SONG DaQian1, ZHANG HanQi1, YU AiMin*1
1(College of Chemistry, Jilin University, Changchun 130012, China)
2(Academy of Quality Inspection and Research in Heilongjiang Province, Harbin 150050, China)
Abstract A sensitive and convenient method based on accelerated solvent extraction (ASE)liquid chromatography tandem mass spectrometry (LCMS/MS) was established for the simultaneous determination of 11 phthalic acid esters(PAEs) in soil. The optimized conditions were as follows: By using nhexane as the extraction solvent, spiked sample was extracted by ASE at 160 ℃ for 4 times, 12 min for each time. The extract was concentrated by evaporation. Qualitative and quantitative analysis was carried out by the multiple reaction monitoring mode after the chromatographic separation with atmospheric pressure chemical ionization(APCI), using acetonitrile
Symbolm@@ 0.1% formic acid water as mobile phase. The limits of detection(LODs) for 11 PAEs were between 0.03-13.0 μg/kg. The recoveries and relative standard deviations were 72.8%-101.8% and 1.7-6.7%, respectively. This method is rapid, sensitive and suitable for the determination of PAEs in soil.
Keywords Accelerated solvent extraction; Liquid chromatography tandem mass spectrometry; Atmospheric pressure chemical ionization; Soil; Phthalic acid esters
(Received 24 September 2013; accepted 7 February 2014)
Determination of 11 Phthalic Acid Esters in Soil by Accelerated
Solvent ExtractionLiquid Chromatography Tandem Mass Spectrometry
YAN Rui1,2, SHAO MingYuan1, SUN ChangHua2, LIU XiaoLing2,
SONG DaQian1, ZHANG HanQi1, YU AiMin*1
1(College of Chemistry, Jilin University, Changchun 130012, China)
2(Academy of Quality Inspection and Research in Heilongjiang Province, Harbin 150050, China)
Abstract A sensitive and convenient method based on accelerated solvent extraction (ASE)liquid chromatography tandem mass spectrometry (LCMS/MS) was established for the simultaneous determination of 11 phthalic acid esters(PAEs) in soil. The optimized conditions were as follows: By using nhexane as the extraction solvent, spiked sample was extracted by ASE at 160 ℃ for 4 times, 12 min for each time. The extract was concentrated by evaporation. Qualitative and quantitative analysis was carried out by the multiple reaction monitoring mode after the chromatographic separation with atmospheric pressure chemical ionization(APCI), using acetonitrile
Symbolm@@ 0.1% formic acid water as mobile phase. The limits of detection(LODs) for 11 PAEs were between 0.03-13.0 μg/kg. The recoveries and relative standard deviations were 72.8%-101.8% and 1.7-6.7%, respectively. This method is rapid, sensitive and suitable for the determination of PAEs in soil.
Keywords Accelerated solvent extraction; Liquid chromatography tandem mass spectrometry; Atmospheric pressure chemical ionization; Soil; Phthalic acid esters
(Received 24 September 2013; accepted 7 February 2014)