免疫毒素LHRHPE40对HeLa细胞表面硬度的影响
张晶
摘 要 利用基于原子力显微镜(AFM)的力谱技术, 在正常生长的单个活细胞表面上, 实时动态地研究了免疫毒素HeLa细胞表面硬度的影响。采用HertzSneddon模型计算所得力曲线相应的杨氏模量。实验表明,
1 引 言
不断发展的纳米技术使得科研工作者可以在纳米级尺度上操纵生物分子和细胞,同时在pN(皮牛)级别上获得各种分子间的相互作用力[1~3]。在这些纳米技术中,原子力显微镜(AFM)是一项具有多种功能的技术手段。AFM可以在准生理条件下对生物样品进行直接测量,不需要复杂的样品处理过程,这使其迅速地被应用于各种生物样品的研究中[4~7]。
在过去的十多年中,研究者应用传统分子生物学实验方法对肿瘤细胞的生化性质进行了大量研究。但是,肿瘤细胞的机械硬度一直都被忽视,尽管肿瘤组织的入侵过程和肿瘤细胞的表面硬度有密切关系[8,9]。近年,细胞硬度作为肿瘤治疗中的一项潜在的生物物理指标受到越来越多的关注[10,11]。在单细胞水平上分析细胞的表面硬度对理解肿瘤组织对化疗药物的反应和评价肿瘤的预后效果十分重要[12]。1992年,Tao等应用AFM研究了被切片的生物组织的硬度[13]。Hoh等应用AFM研究了活细胞的表面硬度[14]。基于这些开创性的研究工作,越来越多的研究者致力于探测在各种不同生理条件下活细胞硬度的变化。Kloxin等通过改变基底成分分析了基底机械性能对心脏瓣膜间质细胞活化成肌成纤维细胞的影响,对于组织再生工程合理地设计移植材料有着重要的意义[15]。Cross等用AFM测量了多种癌症患者胸膜转移癌细胞的硬度,发现转移癌细胞的细胞硬度比良性细胞软70%,为肿瘤的诊断和治疗提供了依据[16]。
免疫毒素LHRHPE40是一种高特异性的针对大量表达LHRH受体(LHRHR)的癌细胞组织的抗癌药物。LHRHPE40的作用机理是:导向部分配体LHRH通过其自身的特异性识别能力与目标组织细胞表面的LHRHR结合,毒性部分PE40通过跨膜转运的方式进入细胞内,发挥其药效,杀死肿瘤细胞[17]。
本研究采用AFM技术实时动态研究了LHRHPE40对HeLa细胞的硬度的影响,并且初步探索了引起HeLa细胞硬度发生变化的原因。
2 实验部分
2.1 仪器与试剂
4 结 论
本研究应用AFM力谱技术考察了免疫毒素LHRHPE40对HeLa细胞的表面硬度的影响。结果表明,LHRHPE40会造成HeLa细胞在凋亡的过程中表面硬度逐步增加。荧光实验结果表明, HeLa细胞硬度的增加与胞内微丝骨架的重组聚集有关。这些实验结果为从细胞表面硬度角度掌握LHRHPE40的药用效果和作用机理提供了重要信息。但是,在LHRHPE40的作用过程中,细胞内的各种生化组分发生了何种变化,仍需要借助其它如拉曼光谱等实验技术的细胞成分分析功能进行进一步研究。
References
1 Neuman K C, Nagy A. Nat. Methods, 2008, 5(6): 491-505
2 Dickenson N E, Armendariz K P, Huckabay H A, Livanec P W, Dunn R C. Anal. Bioanal. Chem., 2010, 396(1): 31-43
3 JI TianRong, LIANG ZhongWei, ZHU XinYu, SHAO YuanHua. Chinese J. Anal. Chem., 2010, 38(12): 1821-1827
纪天容, 梁中伟, 朱新宇, 邵元华. 分析化学, 2010, 38(12): 1821-1827
4 Muller D J, Dufrene Y F. Nat. Nanotechnol., 2008, 3(5): 261-269
5 Jiang J G, Hao X, Cai M J, Shan Y P, Shang X, Tang Z Y, Wang H D . Nano Lett., 2009, 9(12): 4489-4493
6 Zhu R, Rupprecht A, Pohl E E. J. Am. Chem. Soc., 2013, 135(9): 3640-3646
7 Shi X L, Zhang X J, Xia T, Fang X H. Nanomedicine, 2012, 7(10): 1625-1637
8 Kumar S, Weaver V. Cancer Metast. Rev., 2009, 28(1): 113-127
9 Mierke C T. Cell Biochem. Biophys., 2011, 61(2): 217-236
10 Wilson L, Cross S, Gimzewski J, Rao J Y. Idrugs, 2010, 13(12): 847-851
11 Suresh S. Nat. Nanotechnol., 2007, 2(12): 748-749
12 Xiao L F, Tang M J, Li Q F, Zhou A H. Anal. MethodsUk, 2013, 5(4): 874-879
13 Tao N J, Lindsay S M, Lees S. Biophys. J., 1992, 63(4): 1165-1169
14 Hoh J H, Schoenenberger C A. J. Cell Sci., 1994, 107(5): 1105-1114
15 Kloxin A M, Benton J A, Anseth K S. Biomaterials, 2010, 31(1): 1-8
16 Cross S E, Jin Y S, Rao J, Gimzewski J K. Nat. Nanotechnol., 2007, 2(12): 780-783
17 Deng X, Klussmann S, Wu G M, Akkerman D, Zhu Y Q, Liu Y, Chen H, Zhu P, Yu B Z, Zhang G L. J. Drug Target., 2008, 16: 379-388
18 YE ZhiYi, ZHANG Li. Chinese Bull. Life Sci., 2010, 22(8): 817-822
叶志义, 张 丽. 生命科学, 2010, 22(8): 817-822
19 Domke J, Radmacher M. Langmuir, 1998, 14(12): 3320-3325
Effect of Cancer Target Drug LHRHPE40 on Elasticity of HeLa Cells
ZHANG Jing1,2, ZHANG BaiLin*1, TANG JiLin*1
1 (State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun 130022, China)
2(University of Chinese Academy of Sciences, Beijing 100049, China)
Abstract The quantitative analysis of biomechanical profiles at the singlecell level can provide additional information. It is usually not available in traditional cell biology approaches, but may be crucial to assess and understand tumor prognosis and response to chemotherapy. In this study, the online changes of cell elastic properties after the addition of cancer target drug LHRHPE40 were monitored by atomic force microscopy (AFM) on living HeLa cell surface under physiological condition. The results from AFM based force spectroscopy showed that LHRHPE40 induced a distinct increase of the cell surface elasticity of HeLa cells. The fluorescence images implied that the target drug LHRHPE40 would affect the reorganization of cell actions, which led to the increase of the elasticity of HeLa cells.
Keywords Cell elasticity; Singlecell level; Force spectroscopy; Atomic force microscopy
(Received 29 November 2013; accepted 23 March 2014)
This work was supported by the National Natural Science Foundation of China (Nos. 20975096, 21075121, 21275140, 21375122) and the Major State Basic Research Development Program (No. 2011CB935800).
15 Kloxin A M, Benton J A, Anseth K S. Biomaterials, 2010, 31(1): 1-8
16 Cross S E, Jin Y S, Rao J, Gimzewski J K. Nat. Nanotechnol., 2007, 2(12): 780-783
17 Deng X, Klussmann S, Wu G M, Akkerman D, Zhu Y Q, Liu Y, Chen H, Zhu P, Yu B Z, Zhang G L. J. Drug Target., 2008, 16: 379-388
18 YE ZhiYi, ZHANG Li. Chinese Bull. Life Sci., 2010, 22(8): 817-822
叶志义, 张 丽. 生命科学, 2010, 22(8): 817-822
19 Domke J, Radmacher M. Langmuir, 1998, 14(12): 3320-3325
Effect of Cancer Target Drug LHRHPE40 on Elasticity of HeLa Cells
ZHANG Jing1,2, ZHANG BaiLin*1, TANG JiLin*1
1 (State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun 130022, China)
2(University of Chinese Academy of Sciences, Beijing 100049, China)
Abstract The quantitative analysis of biomechanical profiles at the singlecell level can provide additional information. It is usually not available in traditional cell biology approaches, but may be crucial to assess and understand tumor prognosis and response to chemotherapy. In this study, the online changes of cell elastic properties after the addition of cancer target drug LHRHPE40 were monitored by atomic force microscopy (AFM) on living HeLa cell surface under physiological condition. The results from AFM based force spectroscopy showed that LHRHPE40 induced a distinct increase of the cell surface elasticity of HeLa cells. The fluorescence images implied that the target drug LHRHPE40 would affect the reorganization of cell actions, which led to the increase of the elasticity of HeLa cells.
Keywords Cell elasticity; Singlecell level; Force spectroscopy; Atomic force microscopy
(Received 29 November 2013; accepted 23 March 2014)
This work was supported by the National Natural Science Foundation of China (Nos. 20975096, 21075121, 21275140, 21375122) and the Major State Basic Research Development Program (No. 2011CB935800).
15 Kloxin A M, Benton J A, Anseth K S. Biomaterials, 2010, 31(1): 1-8
16 Cross S E, Jin Y S, Rao J, Gimzewski J K. Nat. Nanotechnol., 2007, 2(12): 780-783
17 Deng X, Klussmann S, Wu G M, Akkerman D, Zhu Y Q, Liu Y, Chen H, Zhu P, Yu B Z, Zhang G L. J. Drug Target., 2008, 16: 379-388
18 YE ZhiYi, ZHANG Li. Chinese Bull. Life Sci., 2010, 22(8): 817-822
叶志义, 张 丽. 生命科学, 2010, 22(8): 817-822
19 Domke J, Radmacher M. Langmuir, 1998, 14(12): 3320-3325
Effect of Cancer Target Drug LHRHPE40 on Elasticity of HeLa Cells
ZHANG Jing1,2, ZHANG BaiLin*1, TANG JiLin*1
1 (State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun 130022, China)
2(University of Chinese Academy of Sciences, Beijing 100049, China)
Abstract The quantitative analysis of biomechanical profiles at the singlecell level can provide additional information. It is usually not available in traditional cell biology approaches, but may be crucial to assess and understand tumor prognosis and response to chemotherapy. In this study, the online changes of cell elastic properties after the addition of cancer target drug LHRHPE40 were monitored by atomic force microscopy (AFM) on living HeLa cell surface under physiological condition. The results from AFM based force spectroscopy showed that LHRHPE40 induced a distinct increase of the cell surface elasticity of HeLa cells. The fluorescence images implied that the target drug LHRHPE40 would affect the reorganization of cell actions, which led to the increase of the elasticity of HeLa cells.
Keywords Cell elasticity; Singlecell level; Force spectroscopy; Atomic force microscopy
(Received 29 November 2013; accepted 23 March 2014)
This work was supported by the National Natural Science Foundation of China (Nos. 20975096, 21075121, 21275140, 21375122) and the Major State Basic Research Development Program (No. 2011CB935800).
摘 要 利用基于原子力显微镜(AFM)的力谱技术, 在正常生长的单个活细胞表面上, 实时动态地研究了免疫毒素HeLa细胞表面硬度的影响。采用HertzSneddon模型计算所得力曲线相应的杨氏模量。实验表明,
1 引 言
不断发展的纳米技术使得科研工作者可以在纳米级尺度上操纵生物分子和细胞,同时在pN(皮牛)级别上获得各种分子间的相互作用力[1~3]。在这些纳米技术中,原子力显微镜(AFM)是一项具有多种功能的技术手段。AFM可以在准生理条件下对生物样品进行直接测量,不需要复杂的样品处理过程,这使其迅速地被应用于各种生物样品的研究中[4~7]。
在过去的十多年中,研究者应用传统分子生物学实验方法对肿瘤细胞的生化性质进行了大量研究。但是,肿瘤细胞的机械硬度一直都被忽视,尽管肿瘤组织的入侵过程和肿瘤细胞的表面硬度有密切关系[8,9]。近年,细胞硬度作为肿瘤治疗中的一项潜在的生物物理指标受到越来越多的关注[10,11]。在单细胞水平上分析细胞的表面硬度对理解肿瘤组织对化疗药物的反应和评价肿瘤的预后效果十分重要[12]。1992年,Tao等应用AFM研究了被切片的生物组织的硬度[13]。Hoh等应用AFM研究了活细胞的表面硬度[14]。基于这些开创性的研究工作,越来越多的研究者致力于探测在各种不同生理条件下活细胞硬度的变化。Kloxin等通过改变基底成分分析了基底机械性能对心脏瓣膜间质细胞活化成肌成纤维细胞的影响,对于组织再生工程合理地设计移植材料有着重要的意义[15]。Cross等用AFM测量了多种癌症患者胸膜转移癌细胞的硬度,发现转移癌细胞的细胞硬度比良性细胞软70%,为肿瘤的诊断和治疗提供了依据[16]。
免疫毒素LHRHPE40是一种高特异性的针对大量表达LHRH受体(LHRHR)的癌细胞组织的抗癌药物。LHRHPE40的作用机理是:导向部分配体LHRH通过其自身的特异性识别能力与目标组织细胞表面的LHRHR结合,毒性部分PE40通过跨膜转运的方式进入细胞内,发挥其药效,杀死肿瘤细胞[17]。
本研究采用AFM技术实时动态研究了LHRHPE40对HeLa细胞的硬度的影响,并且初步探索了引起HeLa细胞硬度发生变化的原因。
2 实验部分
2.1 仪器与试剂
4 结 论
本研究应用AFM力谱技术考察了免疫毒素LHRHPE40对HeLa细胞的表面硬度的影响。结果表明,LHRHPE40会造成HeLa细胞在凋亡的过程中表面硬度逐步增加。荧光实验结果表明, HeLa细胞硬度的增加与胞内微丝骨架的重组聚集有关。这些实验结果为从细胞表面硬度角度掌握LHRHPE40的药用效果和作用机理提供了重要信息。但是,在LHRHPE40的作用过程中,细胞内的各种生化组分发生了何种变化,仍需要借助其它如拉曼光谱等实验技术的细胞成分分析功能进行进一步研究。
References
1 Neuman K C, Nagy A. Nat. Methods, 2008, 5(6): 491-505
2 Dickenson N E, Armendariz K P, Huckabay H A, Livanec P W, Dunn R C. Anal. Bioanal. Chem., 2010, 396(1): 31-43
3 JI TianRong, LIANG ZhongWei, ZHU XinYu, SHAO YuanHua. Chinese J. Anal. Chem., 2010, 38(12): 1821-1827
纪天容, 梁中伟, 朱新宇, 邵元华. 分析化学, 2010, 38(12): 1821-1827
4 Muller D J, Dufrene Y F. Nat. Nanotechnol., 2008, 3(5): 261-269
5 Jiang J G, Hao X, Cai M J, Shan Y P, Shang X, Tang Z Y, Wang H D . Nano Lett., 2009, 9(12): 4489-4493
6 Zhu R, Rupprecht A, Pohl E E. J. Am. Chem. Soc., 2013, 135(9): 3640-3646
7 Shi X L, Zhang X J, Xia T, Fang X H. Nanomedicine, 2012, 7(10): 1625-1637
8 Kumar S, Weaver V. Cancer Metast. Rev., 2009, 28(1): 113-127
9 Mierke C T. Cell Biochem. Biophys., 2011, 61(2): 217-236
10 Wilson L, Cross S, Gimzewski J, Rao J Y. Idrugs, 2010, 13(12): 847-851
11 Suresh S. Nat. Nanotechnol., 2007, 2(12): 748-749
12 Xiao L F, Tang M J, Li Q F, Zhou A H. Anal. MethodsUk, 2013, 5(4): 874-879
13 Tao N J, Lindsay S M, Lees S. Biophys. J., 1992, 63(4): 1165-1169
14 Hoh J H, Schoenenberger C A. J. Cell Sci., 1994, 107(5): 1105-1114
15 Kloxin A M, Benton J A, Anseth K S. Biomaterials, 2010, 31(1): 1-8
16 Cross S E, Jin Y S, Rao J, Gimzewski J K. Nat. Nanotechnol., 2007, 2(12): 780-783
17 Deng X, Klussmann S, Wu G M, Akkerman D, Zhu Y Q, Liu Y, Chen H, Zhu P, Yu B Z, Zhang G L. J. Drug Target., 2008, 16: 379-388
18 YE ZhiYi, ZHANG Li. Chinese Bull. Life Sci., 2010, 22(8): 817-822
叶志义, 张 丽. 生命科学, 2010, 22(8): 817-822
19 Domke J, Radmacher M. Langmuir, 1998, 14(12): 3320-3325
Effect of Cancer Target Drug LHRHPE40 on Elasticity of HeLa Cells
ZHANG Jing1,2, ZHANG BaiLin*1, TANG JiLin*1
1 (State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun 130022, China)
2(University of Chinese Academy of Sciences, Beijing 100049, China)
Abstract The quantitative analysis of biomechanical profiles at the singlecell level can provide additional information. It is usually not available in traditional cell biology approaches, but may be crucial to assess and understand tumor prognosis and response to chemotherapy. In this study, the online changes of cell elastic properties after the addition of cancer target drug LHRHPE40 were monitored by atomic force microscopy (AFM) on living HeLa cell surface under physiological condition. The results from AFM based force spectroscopy showed that LHRHPE40 induced a distinct increase of the cell surface elasticity of HeLa cells. The fluorescence images implied that the target drug LHRHPE40 would affect the reorganization of cell actions, which led to the increase of the elasticity of HeLa cells.
Keywords Cell elasticity; Singlecell level; Force spectroscopy; Atomic force microscopy
(Received 29 November 2013; accepted 23 March 2014)
This work was supported by the National Natural Science Foundation of China (Nos. 20975096, 21075121, 21275140, 21375122) and the Major State Basic Research Development Program (No. 2011CB935800).
15 Kloxin A M, Benton J A, Anseth K S. Biomaterials, 2010, 31(1): 1-8
16 Cross S E, Jin Y S, Rao J, Gimzewski J K. Nat. Nanotechnol., 2007, 2(12): 780-783
17 Deng X, Klussmann S, Wu G M, Akkerman D, Zhu Y Q, Liu Y, Chen H, Zhu P, Yu B Z, Zhang G L. J. Drug Target., 2008, 16: 379-388
18 YE ZhiYi, ZHANG Li. Chinese Bull. Life Sci., 2010, 22(8): 817-822
叶志义, 张 丽. 生命科学, 2010, 22(8): 817-822
19 Domke J, Radmacher M. Langmuir, 1998, 14(12): 3320-3325
Effect of Cancer Target Drug LHRHPE40 on Elasticity of HeLa Cells
ZHANG Jing1,2, ZHANG BaiLin*1, TANG JiLin*1
1 (State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun 130022, China)
2(University of Chinese Academy of Sciences, Beijing 100049, China)
Abstract The quantitative analysis of biomechanical profiles at the singlecell level can provide additional information. It is usually not available in traditional cell biology approaches, but may be crucial to assess and understand tumor prognosis and response to chemotherapy. In this study, the online changes of cell elastic properties after the addition of cancer target drug LHRHPE40 were monitored by atomic force microscopy (AFM) on living HeLa cell surface under physiological condition. The results from AFM based force spectroscopy showed that LHRHPE40 induced a distinct increase of the cell surface elasticity of HeLa cells. The fluorescence images implied that the target drug LHRHPE40 would affect the reorganization of cell actions, which led to the increase of the elasticity of HeLa cells.
Keywords Cell elasticity; Singlecell level; Force spectroscopy; Atomic force microscopy
(Received 29 November 2013; accepted 23 March 2014)
This work was supported by the National Natural Science Foundation of China (Nos. 20975096, 21075121, 21275140, 21375122) and the Major State Basic Research Development Program (No. 2011CB935800).
15 Kloxin A M, Benton J A, Anseth K S. Biomaterials, 2010, 31(1): 1-8
16 Cross S E, Jin Y S, Rao J, Gimzewski J K. Nat. Nanotechnol., 2007, 2(12): 780-783
17 Deng X, Klussmann S, Wu G M, Akkerman D, Zhu Y Q, Liu Y, Chen H, Zhu P, Yu B Z, Zhang G L. J. Drug Target., 2008, 16: 379-388
18 YE ZhiYi, ZHANG Li. Chinese Bull. Life Sci., 2010, 22(8): 817-822
叶志义, 张 丽. 生命科学, 2010, 22(8): 817-822
19 Domke J, Radmacher M. Langmuir, 1998, 14(12): 3320-3325
Effect of Cancer Target Drug LHRHPE40 on Elasticity of HeLa Cells
ZHANG Jing1,2, ZHANG BaiLin*1, TANG JiLin*1
1 (State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun 130022, China)
2(University of Chinese Academy of Sciences, Beijing 100049, China)
Abstract The quantitative analysis of biomechanical profiles at the singlecell level can provide additional information. It is usually not available in traditional cell biology approaches, but may be crucial to assess and understand tumor prognosis and response to chemotherapy. In this study, the online changes of cell elastic properties after the addition of cancer target drug LHRHPE40 were monitored by atomic force microscopy (AFM) on living HeLa cell surface under physiological condition. The results from AFM based force spectroscopy showed that LHRHPE40 induced a distinct increase of the cell surface elasticity of HeLa cells. The fluorescence images implied that the target drug LHRHPE40 would affect the reorganization of cell actions, which led to the increase of the elasticity of HeLa cells.
Keywords Cell elasticity; Singlecell level; Force spectroscopy; Atomic force microscopy
(Received 29 November 2013; accepted 23 March 2014)
This work was supported by the National Natural Science Foundation of China (Nos. 20975096, 21075121, 21275140, 21375122) and the Major State Basic Research Development Program (No. 2011CB935800).