1250KVA船用轴带发电机励磁控制系统改造简介

黄平



我司“向泰”轮是一艘1986年4月由前东德Ver Warwowwerft wame建造的集装箱尾机型船舶,船长:165.5m,型宽:23.05m,型深:13.4m,船舶总吨位:13 769t,载箱量:950TEU。船舶主要动力系统:配备前东德VEB Diesel Motorenwerk Rostock生产的K5SZ70/125BL船舶柴油主机一台,推进系统采用液压变螺距装置。电力系统:配备2台8VDS26/20AL-2和1台6VDS26/20AL船舶柴油辅机,驱动3台型号:S450L6 885KVA无刷发电机,同时配备DGASO 5621-6N 1250KVA船用轴带有刷发电机一台。2007年,我司从船舶二手市场购入该船后,一直从事东南亚和中日韩航线的集装箱运输。船舶港内航行通常使用柴油发电机组,海上航行使用船舶轴带发电机组,以获得最经济的航行成本。
一、船舶轴带发电机主要参数及原理
1.轴带发电机主要参数:
发电机型号:DGASO 5621-6N
生产厂家:VEB ELEKTROMAS CHINENBAU DRESDEN
额定功率:1 250KVA
额定转速:1 000RPM
额定电压:390V
额定电流:1850A
额定频率:50Hz
功率因数:0.8
励磁电压:95V
励磁电流:210A
2.轴带发电机励磁系统组成及工作原理:
轴带发电机励磁系统原理图见图1。
该轴带发电机励磁系统采用单相桥式半控带电流复励的有刷自励恒压励磁系统,系统分别由扼流圈单元、功率单元、功率保护单元、调节单元、复励单元、复励变压器等部件组成(图2)。
轴带发电机励磁系统的基本工作原理:
由发电机R相与零线构成的URO 220V电压经扼流圈单元中的两个扼流圈(空心电抗器)后送功率单元,经功率单元内的单相桥式半控整流器整流后,作为励磁系统的自励分量给发电机励磁绕组供电。励磁系统的复励分量则通过复励变压器送入复励单元,经复励单元三相全波整流后输出,并在直流侧与自励分量叠加,共同给发电机励磁绕组供电。
发电机的输出电压UST在调节单元中与基准电压进行比较,其差值信号经整形、放大、移相等环节输出,作为可控硅的触发信号去功率单元中的单相桥式半控整流器,通过控制可控硅的导通角,对发电机输出电压进行自动调节,维持输出电压恒定。调节单元同时在轴带发电机起压时根据励磁指令控制发电机的起压。
电路中扼流圈(空心电抗器)单元主要作用是限制整流回路中电流上升的陡度和高频滤波,同时兼有移向作用。保护单元主要作用是防止励磁电压过高及起压、调节时的冲击对功率单元及复励单元的整流元件进行保护。
二、故障现象及检查
2010年2月10日,海上航行中船舶轴带发电机主开关突然跳闸,轴带发电机仪表显示电压迅速归零。船舶值班人员紧急启动柴油发电机组供电,在恢复主机动力及正常航行后,船舶电机员对轴带发电机进行了系统检查,轴带发电机各接线未发现有松动及脱落情况,检查轴带发电机滑环、四组碳刷接触良好,进一步检查励磁控制系统的各整流设备及其他部件也未发现问题。随后,主机降速合上轴带发电机离合器且逐步将转速调整到正常转速,对轴带发电机进行充磁起压,电压指针有晃动但无法起压。停机更换功率单元中的可控硅等元器件后试验,情况如前。进一步检查分析后,判断故障应该在该轴带发电机励磁控制系统的调压单元(REGULATE UNIT), 由于船舶电机员自己无法修复,为此电请公司岸基支持。
船舶抵港后,我们即携带部分仪器上船对轴带发电机等设备进行了详细检查,确认船舶电机员的判断是正确的。发电机的调压单元(REGULATE UNIT)由10块不同功能的插板组成,而每块插板均由各分立元器件焊接组成(图3):
也许该部分涉及当时生产厂家的核心技术,或船舶出厂后几经周折,船上无法找到厂家提供的内部接线图及相关的说明书等资料。我们拔下10块插板,对其外观进行检查,未发现有明显缺陷。更换10块备用插板试验,故障依然存在。于是我们安排相关专业修单位将该单元的10块插板拆厂检查修理,经几次反复修理及试验,无法找到故障板子。为此我们有理由判断该类故障以前也曾发生过,备用插板有可能就是换下来的,也是有同类问题的板子。考虑到原设备使用至今已有二十几年,且发电机励磁控制系统调节单元元器件老化严重,单元组合相对复杂,特别是各插板均由分立元器件焊接组成,即便本次找到毛病也可能无法找到替换元器件,或本次修复了,但老化了的元器件故障率会较高,导致单元的可靠性大幅下降,使轴带发电机无法正常连续运行,从而影响船舶安全。为此,我们决定寻找性能适合的调节单元予以更换,即对该轴带发电机的励磁控制系统进行更新改造。
三、改造方案的确定和试验
由于故障部分为轴带发电机励磁系统中的调节单元(REGULATE UNIT),我们在确定方案前,曾联系过国内几家主要发电机生产厂家,寻求相关功能的产品或请他们帮助设计相关功能的产品,也许是产值过小或产品仅为个案并无推广价值,所以他们都予以婉拒。为此,我们从寻找相关功能的产品着手,经与几家相关产品生产厂家沟通后,我们最终选定使用东莞市广聚电子有限公司生产的HJH-178发电机励磁调压器驱动板,作为轴带发电机励磁系统调节单元的替代单元。选用这家企业的产品,主要是考虑HJH-178发电机励磁调压器驱动板功能与我们轴带发电机励磁系统中的调压单元主要功能比较接近,对整个线路改动小。我们参考厂家的产品设计接线图,并进一步细化改进后对轴带发电机励磁系统进行改造。
HJH-178发电机励磁调压器驱动板外部接线图如图4。(资料来源于网上):
驱动板的主要技术参数(摘驱动板说明书):
输入: 正常范围:150V~240V,最大277V。
输出: 正常范围:0~180V/0~300A。
最大: 210V/600A(持续一分钟)。
该驱动板的特点:
1.最低输入交流电压1.0V 时即可输出0.4V励磁电压。
2.能在低于150V的输入电压下工作10秒。
3.驱动设过流保护。
4.驱动板能驱动功率器件作半波和全波输出。
5.励磁信号输出最大电流3A(峰值,单路峰值1.5A),可安全的驱动600A或600A以下的可控硅正常工作。
HJH-178发电机励磁调压器驱动板实际图片如图5。
驱动板厂家设计的发电机励磁系统基本接线图如图6。
由于驱动板是该厂家2008年后刚上市的新产品,且厂方只提供驱动板产品及产品的外部接线图和励磁系统的理论设计,不参与实际施工与调试。该产品能否应用于我们的轴带发电机励磁系统,厂方不做担保。至于驱动板性能到底如何,是否与说明书中主要技术参数相符?厂方也不提供设计及试验数据。而我们的设计仅根据产品的说明及厂家提供的资料进行,理论上虽然能讲得通,但是否能替代原设备单元并无十分把握。为此我们分两步对轴带发电机励磁系统进行改造试验:
首选确认该驱动板的产品性能及板子能驱动的最大连续工作电流是否符合本轴带发电机的实际使用要求。
获得基本参数后,我们按细化设计的实际线路,测试发电机励磁系统在空载和航行最大负荷的120%工况下的自励分量和复励分量电流,尤其是确认自励分量是否在上述试验值范围内,只有保证在最大典型工况中驱动板的连续驱动电流在上述的测试范围内,才能保证轴带发电机在日常最大连续负载下的稳定可靠运行。
A.为此我们首先按下图接线,即将发电机励磁系统中的复励部分切除,对驱动板的性能及板子能驱动的最大持续电流进行实效试验。
接妥各接线并检查确认无误后,将推进器螺距置零位开启主机,运行一段时间后合上轴带发电机离合器,并逐步将主机加速到额定转速,然后对轴带发电机进行充磁建压,并调整空载电压(即调节驱动板上的P1)至额定电压,调整稳定性(即调节驱动板上的P2)至电压波动为最小,此时测试空载励磁电压为33V。但在发电机空载稳定运行约10分钟左右,驱动板即烧坏。我们将驱动板及试验情况反馈生产厂家,由生产厂家对驱动板进行改进,经来回反复几次试验改进,板子的性能逐步满足要求。
我们在收到最终改进后的驱动板后,按上述步骤对轴带发电机进行了再次试验。我们在轴带发电机空载稳定运行30分钟后,逐步增加负载,直至400kW,测试励磁电压:48V,励磁电流125A,运行15分钟左右情况正常。我们增加负荷至460kW,运行10分钟左右,轴带发电机主开关跳闸,检查驱动板发现有明显的烧坏痕迹,我们将驱动板及试验情况再一次反馈生产厂家,由生产厂家对驱动板进行再改进。
我们在收到改进后的驱动板后,对轴带发电机进行了再次试验。我们在轴带发电机空载稳定运行30分钟后,逐步增加负载,直至400kW,测试励磁电压:48V,励磁电流125A,运行15分钟左右情况正常。我们增加负荷至460kW,运行35分钟左右,轴带发电机情况正常,说明驱动板基本能满足我们要求。我们用点温计测试驱动板上各元器件,温升正常,测试各接线连接点温度,发现部分节点处温度过高,特别是R,N连接处50mm2线接头处温度高达85℃左右,即停机结束试验。
重新制作连接线及接头,对发热部分线路进行更换。更换后重新进行试验,轴带发电机负载加至470kW,测试励磁电压:48V,励磁电流110A;负载增加至520kW,测试励磁电压:51V,励磁电流115A。在520kW运行2.5小时,期间多次测试数据,基本稳定。我们对船舶最大负荷的两台电机(75kW的主机应急鼓风机)进行突卸突加试验,以检测大负荷突卸突加对主电网的冲击波动,测试的动静态指标符合规范要求。考虑到船舶平时航行工况电力负荷基本在420kW左右,试验数据已大于航行工况数据,基本确认驱动板符合本轴带发电机使用要求。从而结束第一步的试验。
B.随后我们进行第二步的试验:
按我们细化设计的实际线路连接,即图7。
加入发电机励磁系统中的复励部分。在轴带发电机正常发电后测试空载数据:发电机电压390V,励磁电压32V,励磁电流85A,其中自励分量为45A,复励分量为40A。负荷增加至480kW时测试数据:发电机电压390V,励磁电压49V,励磁电流128A,其中自励分量为56A,复励分量为72A。轴带发电机在480kW的负荷下连续运行3小时,期间测试各数据基本没什么变化。负荷在增减中及船舶最大负荷电机进行突卸突加试验中发电机的静态指标和动态指标符合规范要求。轴带发电机在额定功率48%负荷时,驱动板的驱动电流为第一步试验值(115A)的49%。通过实测我们认为该驱动板可满足本轴带发电机的实际使用要求,用该驱动板取代原轴带发电机的调节单元(REGULATE UNIT)性能上不存在问题,能投入正常使用。随后我们在船舶海上航行中对轴带发电机进行了3航次的运行试验,基本每航次负荷在420~470kW下连续运行30~32小时,轴带发电机运行正常,船舶对试运行情况进行了详细记载。至此我们可以确认该轴带发电机励磁控制系统更新改造工作是成功的。
四、结束语
我司“向泰”轮轴带发电机励磁控制系统改造后使用至今已近三年,设备运行状况一直比较理想,基本未发生过故障。上述整个改造费用约3.5万元左右(包括提供一块备用驱动板),其经济性是显而易见的。当然整个改造过程不会像以上论述的那么简单,从事一项新的没有前人经验可借鉴的改造工程,曲折、风险和困难是不可避免的。轴带发电机励磁控制系统更新改造的成功,为类似老发电机励磁系统的修理改造提供了一些借鉴经验,这也是本人发表这篇论文的初衷。科学技术的发展,科技新产品的不断问世,给船用发电机修理提供了多种新的途径和方案,关键是取舍和经验。