例析高中物理变力做功的问题,提升学生物理核心素养

    黎进

    

    

    【内容摘要】高中阶段对机械能的学习,其中功能关系是整个知识网络的基石。求力做功的方法,在粤教版教材中只有最基本的恒力做功W=Flcosθ。在科技日新月异的进步下,高中物理的学科素养要求也会不断提高,因此高中求做功问题,不会停留在只有恒力做功问题。本文归纳六种变力做功的解决方法并阐释了解决六种变力做功问题的物理核心素养。

    【关键词】高中物理 做功 方法 核心素养

    一、利用动能定理求解变力做功问题

    高中物理中的动能定理也是机械能知识网络的一部分,对求解各种问题有很广泛的应用。使用动能定理求变力做功,是功能关系的基本应用,只是常见的问题是使用合力做功求动能变化,因此使用动能定理求解变力做功,要求学生有一定的逆向思维。可以使用动能定理求解变力做功问题有以下特点:过程复杂,但有明确的初末状态。

    例题1:如图1所示,某质点沿直线运动的v-t图像为余弦曲线,从图中可以判断( )

    A.在0~t1时间内,合力逐渐减小

    B.在0~t1时间内,合力做负功

    C.在t1~t2时间内,合力的功率增大

    D.在t2~t3时间内,合力做的总功为零

    说明: B选项:在0~t1时间内,速度越来越小,由动能定理可知合外力做负功,所以B正确;D选项:在t2~t3时间内,动能变化不为0,由动能定理可知,合力做的总功不为零,所以D错误。(注:此题答案为B)

    总结:应用动能定理,只需思考过程中的力是否做功,及初、末状态的动能,不需考虑力变化的问题,简化问题,容易操作。熟练掌握此方法,对学生解决物理问题化繁为简的学科素养提高起到促进作用。

    二、利用平均值求解变力做功问题

    平均值是数理化学科中经常出现的名词,学生对求平均值的方法并不陌生。但使用平均值求解变化问题,则对学生的逻辑思维能力有一定的要求。在求解变力做功的问题中,有些特例可以使用F=F1+F22求力的平均值,变力做的功等效于平均值力做的功即:W=Fx。在物理问题中引入平均值求解问题,一般不会在求平均值的方法有太大的要求,因此此类变力做功问题的特点为:变力的方向不变,大小均匀变化,达到使用F=F1+F22求平均值的要求。

    例题2:某弹簧的弹力(F)—伸长量(x)的关系图像如图2所示,弹簧由被拉长4cm到恢复原长的过程中,弹力做功为( )

    A.0.4JB.-0.4JC.0.8JD.-0.8J

    说明:由图2可知拉长4cm时弹力为F1=20N,恢复原长时,弹力F2=0。又因为弹簧的弹力是随位移(即形变量x)均匀变化的,因此弹力做的功可以使用平均值计算,故弹力做的功大小为W=Fx=F1+F22x=0+202×0.04J=0.4J

    (此题答案为A)

    总结:平均值求解变力做功问题与匀变速直线运动等“匀变规律”有相似之处,对这两个知识点的联动可使学生举一反三的解题思维得到提升。

    三、利用路徑求解变力做功问题

    功的定义:力和力的方向上位移的乘积。但有些变力做功问题则可以使用路径代替位移。这种方法使用到数学学科中的微元法,因此对学生的数学思维有一定的要求。在物理问题中使用微元法,只需对微元进行理解,并不需要用到微元法的数学计算。如在外力加速下的圆周运动,质点所受力F大小恒定,但方向随路径变化。可将路径分成多段极短的圆弧,由于每段圆弧都极小,因此可以看作一段极短的直线即位移,由于力的速度随路径变化,因此在每一段极小段位移上的力也可以看作成与位移方向相同。而路径的长度则是每一小段位移的代数和。因此,此变力做的功可等效于力与路径长度的乘积。此类变力做功问题的特点:力大小恒定,方向随路径变化。

    例题3:用大小不变、方向始终与物体运动方向一致的力F,将质量为m的小物体沿半径为R的固定圆弧轨道从A点推到B点,圆弧对应的圆心角为60°,如图3所示,则在此过程( )

    A.力F对物体做的功为FRsin60°

    B.力F对物体做的功为πRF3

    C.力F对物体做的功为mgR2

    D.力F是变力,无法计算做功大小

    说明:物体从A点推到B点过程,把圆弧分割为无限小的n段,每段长度上力与位移近似看作直线运动,则整个过程的位移就是弧长,力对物体做的功为

    WF=FS=F·60°360°·2πR=πRF3

    (注:此题答案为B)

    总结:与上一问题形成对比,当力的大小恒定,而方向随路径变化。有利于学生归纳和加深记忆。同时“微元法”关联了高中数学的学科知识,对培养学生的数理思维有很大的帮助。

    四、利用等效替代法求解变力做功问题

    有些变力做功问题,变力方向及大小都变化,且变化规律复杂,也没有使用动能定理的条件。此时应该考虑改变研究对象,联合生活实际思考“谁做功”和“对谁做功”的问题。此类变力做功问题往往与绳子两端及定滑轮有关。

    例题4:人在A点拉着绳通过一个定滑轮匀速吊起质量m=50kg的物体,如图4所示,开始时绳与水平方向成60°角,当人拉着绳由A点沿水平方向运动s=2m而到达B点时,绳与水平方向成30°角,求人对绳的拉力做了多少功?(不计摩擦,g取10m/s2)

    说明:人对绳的拉力所做的功与绳对物体的拉力所做的功相等,设人手到定滑轮的竖直距离为h,物体上升的高度等于滑轮右侧绳子增加的长度,即△h=hsin30°-hsin60°又s=htan30°-htan60°所以人对绳的拉力做的功W=mg△h=mg·(3-1)s≈732J

    总结:转变研究对象,灵活的解题思路。掌握此方法,对学生思维的灵活性起到促进的作用。此类问题还关联了能量守恒规律,对提高学生的综合物理素养有一定的帮助。同时启发学生,形成“输入”等于“输出”的物理概念,对后面知识点如变压器、远距离输电等知识点起到铺垫的作用。

    五、利用图像法求解变力做功问题

    在运动学中对利用v-t图像的求解位移时,利用位移公式S=Vt结合数学微积分的思路得知图像与x轴围成的面积等于位移。

    与其规律相同的,在利用F-S图像求解做功时,做功公式W=FS,因此可推导出图像与x轴围成的面积等于功,如下图5-6所示。

    例题5:一物体所受的力F随位移x变化的图像如图7所示,求在这一过程中,力F对物体做的功为( )

    A.3 JB.6 JC.7 JD.8 J

    说明:力F对物体做的功等于图线与横轴x所包围面积的代数和。

    0-4s这段时间内力F对物体做的功为W1=12×(3+4)×2J=7J;

    4-5s这段时间内力F对物体做的功为W2=-12×(5-4)×2J=-1J。

    全过程中,力F对物体做的功为W=7 J-1 J=6 J(此题答案为B)

    总结:物理结合函数图像是科学素养的一种体现,因此对函数图像的理解及规律應用是必备的知识工具,是现代物理教学的一种趋势。因此不能把函数及函数图像的理解全推给数学学科,在物理上也要多角度分析函数图像。对学生学习后面的知识点如电势及电势能、交变电流等有一定的帮助。

    六、利用功率求解变力做功问题

    高中物理中变力做功还可以利用W=Pt求解,但是必须满足变力功率不变的条件,此类变力做功问题多涉及汽车恒定功率启动的模型。

    例题6:一辆汽车在平直的公路上由静止开始启动,在启动过程中,汽车牵引力的功率及其瞬时速度随时间的变化情况分别如图8甲、乙所示,已知汽车所受阻力恒为重力的15,重力加速度g取10m/s2。下列说法正确的是( )

    A.该汽车的质量为3×103kg

    B.v0=6m/s

    C.在前5s内,汽车克服阻力做功为2.5×104J

    D.在5~15s内,汽车的位移大小约为67.19m

    说明:D选项5~15s内,汽车牵引力做的功可以写成W=Pt,结合动能定理得Pt-15mgs=12mv02-12mv2 解得s≈67.19m,故D正确。(注:此题答案为CD)

    总结:功率这一物理量在高中物理中也有相对较重的地位:一是对做功效率的理解,二是公式的推导得出W=Fv规律。利用功率求变力做功,是对学生知识全面性的考核。

    结语

    高中物理学习不仅要考虑恒力做功,在高考中变力做功也是热点和难点。但是变力做功没有固定的参照计算公式,为了帮助学生解决变力做功的方法,同时也提高学科素养,本文结合实际例题,点拨分析了变力做功问题及归纳解决方法。

    【参考文献】

    [1]杨福.变力做功的求解方法归类[J].理科考试研究:高中版,2007(8):27-30.

    [2]闫春更,周青,王婷婷.教科书难度评价的模型建立与方法改进[J].上海教育科研,2015(9).

    (作者单位:广东信宜砺儒中学)