势阱深度可调bistable电路及其在结构监测中的应用

杨恺 苏克玮



摘要: Bistable电路是一种具有双势阱的非线性电路,其鞍结分岔现象可用于基于振动信号的结构健康监测。然而以往文献提出的bistable电路势阱深度不可调节,导致鞍结分岔边界不能改变,限制了其应用范围。提出了一种改进的bistable电路,可以实现势阱深度的调节,从而改变其鞍结分岔边界。首先,阐述了基于bistable电路的结构健康监测原理以及势阱深度可调的bistable电路原理;其次,讨论了该电路的非线性动力学行为,并通过Multisim软件进行了仿真验证;最后,数值仿真研究了采用势阱深度可调的bistable电路监测悬臂梁结构刚度的微小变化,并与采用以往bistable电路的结果对比。结果显示,在微小激励作用下,当悬臂梁的一阶模态刚度减少2%时,势阱深度可调的bistable电路发生了鞍结分岔,明显表征了结构的微小变化,而以往的bistable电路未发生分岔现象,难以识别出结构的微小变化。
关键词: 结构健康监测; bistable电路; 振动信号; 鞍结分岔
中图分类号: O327; TM132 文献标志码: A 文章编号: 1004-4523(2018)05-0862-08
DOI:10.16385/j.cnki.issn.1004-4523.2018.05.016
引 言
在航空航天、船舶机械以及土木等工程领域,结构健康监测一直是国内外学者的研究热点。其中,基于振动信号的监测方法受到了广泛关注[1]。该方法通过微机电系统(Microelectro-mechanical systems, MEMS)采集结构试件的振动响应信息[2],并通过一定的辨识方法判断结构的损伤情况。在基于振动信号的监测方法中,监测结构固有频率的方法具有两个优点:(1)仅需要一个传感器,使监测系统的组成简单;(2)结构在固有频率位置的振动响应明显,不会被背景噪声污染。因此与基于模态形状、模态曲率的监测方法[3-4]相比,监测结构固有频率变化的方法更加简单有效[5-6]。
然而,当结构损伤引起的固有频率变化较小时,结构阻尼和传感器噪声这两个因素导致传感器信号可能对这种变化不敏感,使得直接分析结构的振动响应信号难以识别出固有频率的微小变化。为解决该问题,学者们将目光投向了非线性领域,利用非线性系统动力学特性“放大”结构参数变化前后振动响应的差异,从而提高结构健康监测的准确度,例如,参数共振特性[7-8]、软非线性Duffing系统的鞍结分岔特性[9-10]以及bistable系统的鞍结分岔特性[11]。其中,bistable系统的鞍结分岔(Saddle-node bifurcation)特性非常有利于“放大”振动响应的变化。Bistable系统是一种具有双势阱(Twin wells)的动力学系统,其具有一个不稳定的平衡点以及两个关于该不稳定平衡点对称的稳定平衡点,并且具有两种不同的单周期受迫振动形式:围绕不稳定平衡点的跨阱振动(Inter-well oscillation)以及围绕其中某个稳定平衡点的阱内振动(Intra-well oscillation)。其鞍结分岔动力学行为则表现为:当某一参数发生微小变化时,跨阱振动(或阱内振动)突变为阱内振动(或跨阱振动)。实验结果证实,这种分岔特性会导致振动响应的图像发生显著变化[12-14]。因此,这种显著的振动响应变化可用来准确监测结构的微小变化。
具有bistable系统特性的结构通常通过屈曲梁、磁铁相互作用、斜拉弹簧等机械结构方式实现,这类结构的刚度项可近似表达为“负线性刚度”与“正的三次刚度”的组合 [15],从而具有两个对称的稳定平衡点。然而,采用这类机械结构方式实现的bistable系统体积较大,难以与MEMS集成,因此,Harne和Kim等利用模拟电路元件设计了具有bistable特性的电路,并将该电路与压电贴片组合,构成了监测传感器[16-18],从而显著降低了bistable系统的体积,实现了与MEMS 的有效集成。该电路利用两个开关二极管的导通特性,使电路存在两个与二极管正向压降相关、且对称分布的稳定电压(即稳定平衡点),从而实现了bistable特性。对于文献[16-18]提出的bistable电路而言,势阱深度与其稳定平衡点耦合,当固定稳定平衡点之后,势阱深度无法改变,导致鞍结分岔边界不能调节,从而限制了其应用范围。为此,本文提出了一种势阱深度可调的bistable电路,以使分岔边界电压值可调,并详细研究了该电路的动力学特性,以及利用该电路监测悬臂梁刚度的微弱变化。
1 基于bistable电路的结构健康监测原理 文献[16-18]提出的基于bistable电路监测悬臂梁结构固有频率变化的原理如图1所示。悬臂梁结构根部的表面贴有压电片,当结构基础受到周期激励产生振动时,会引起压电贴片的应变,从而产生电压Vi。图中,Cp,Rp为压电贴片的内部电容和电阻。Vi作为bistable电路的输入电压,而bistable电路的输出电压为V0,即用于监测结构固有频率变化的电压信号。两个二极管首尾相接,正向压降均为Vd。电阻R3L/C[19],导致在R3所在支路的电流I3远远小于图示的支路电流I。
图2给出了g=1.5,2,3时势能U(V0)关于V0的变化曲线。结果显示,势能U(V0)有两个对称的势阱。其中,稳定平衡点(即势阱最低点)分别为V0=±gVd。结果表明,当降低g时,势阱深度D(g)=g(1-g)V2d/2也随之降低,这就使得阱内振动更容易向跨阱振動“逃逸”,降低了发生鞍结分岔的“边界电压”。但是,注意到稳定平衡点位置V0=±gVd与g相关,因此通过降低参数g降低势阱深度时,稳定平衡点位置V0=±gVd也会向不稳定平衡点V0=0靠拢。稳定平衡点距离的减小会导致阱内振动与跨阱振动的区分度减弱,造成两种振动图像之间的差异减小,不利于监测结构响应的微弱变化。
為解决该问题,本文提出了一种势阱深度可调的bistable电路,解耦了势阱深度与平衡点,可实现在稳定平衡点不变的情况下依然能调节势阱深度。
2 势阱深度可调的bistable电路原理
势阱深度可调的bistable电路原理如图3所示。在电阻R3支路串联可变电阻R4,利用R4分压。
图11给出了采用无势阱深度调整功能的bistable电路[16-18](如图1所示)的仿真结果。仿真所用的参数及结构刚度变化情况与图10一致。结果显示,结构刚度变化前后,V0均处于阱内振动,电压幅值变化微弱,难以反映出结构刚度的微小变化。图10和图11的结果对比表明,增加势阱可调功能的bistable电路有助于在低幅度激励工况下监测结构的微小变化。
5 结 论
本文提出了一种势阱深度可调的bistable电路。该电路与压电贴片组合,能明显监测出结构振动响应的细微差别,从而能准确判断结构参数的微小改变。研究结果表明,在稳定平衡点固定的情况下,势阱深度可调的bistable电路可以通过调节电阻值实现势阱深度的调节,从而改变鞍结分岔的边界电压。相比无势阱深度调整功能的bistable电路,势阱深度可调的bistable电路通过降低鞍结分岔的边界电压,从而能够准确识别结构在小幅度振动工况下参数的微小变化,拓宽了监测应用范围。
参考文献:
[1] Carden E P, Fanning P. Vibration based condition monitoring: a review[J]. Structural Health Monitoring, 2004, 3(4): 355—377.
[2] Jiang L J, Tang J, Wang K W. An enhanced frequency-shift-based damage identification method using tunable piezoelectric transducer circuitry[J]. Smart materials and Structures, 2006, 15(3):799
[3] Qiao P, Cao M. Waveform fractal dimension for mode shape-based damage identification of beam-type structures[J]. International Journal of Solids and Structures, 2008, 45(22): 5946—5961.
[4] Lestari W, Qiao P, Hanagud S. Curvature mode shape-based damage assessment of carbon/epoxy composite beams[J]. Journal of Intelligent Materials Systems and Structures, 2007, 18(3):189—208.
[5] Salawu O S. Detection of structural damage through changes in frequency: a review[J]. Engineering Structures,1997,19(9):718—723.
[6] Majumdar A, Maiti D K, Maity D. Damage assessment of truss structures from changes in natural frequencies using ant colony optimization[J]. Applied Mathematics and Computation, 2012, 218(19): 9759—9772.
[7] Zhang W, Turner K L.Application of parametric resonance amplification in a single-crystal silicon micro-oscillator based mass sensor[J]. Sensors and Actuators A Physical, 2005, 122(1): 23—30.
[8] Yie Z, Zielke M A, Burgner C B, et al. Comparison of parametric and linear mass detection in the presence of detection noise[J]. Journal of Micromechanics and Microengineering, 2011,2132(21): 25027—25025.
[9] Younis M I, Alsaleem F. Exploration of new concepts for mass detection in electrostatically-actuated structures based on nonlinear phenomena[J]. Journal of Computational and Nonlinear Dynamics,2009, 4(1): 021010.
[10] Kumar V, Boley J W, Yang Y, et al. Bifurcation-based mass sensing using piezoelectrically-actuated microcantilevers[J]. Applied Physics Letters, 2011,98(15): 185.
[11] Harne R L, Wang K W. A bifurcation-based coupled linear-bistable system for microscale mass sensing[J]. Journal of Sound and Vibration,2014, 333(8):2241—2252.
[12] Yang K, Harne R L, Wang K W, et al. Dynamic stablization of a bistable suspension system attached to a flexible host structure for operational safety enhancement[J]. Journal of Sound and Vibration, 2014, 333(2): 6651—6661.
[13] Wu Z, Harne R L, Wang K W. Energy harvester synthesis via coupled linear-bistable system with multistable dynamics[J]. Journal of Applied Mechanics, 2014, 81(6): 061005.
[14] Harne R L, Thota M, Wang K W. Concise and high-fidelity predictive criteria for maximizing performance and robustness of bistable energy harvesters[J]. Applied Physics Letters,2013, 102(5): 053903.
[15] Harne R L, Wang K W. Harnessing Bistable Structural Dynamics: For Vibration Control, Energy Harvesting and Sensing[M]. Chichester:Wiley, 2017.
[16] Harne R L, Wang K W. Robust sensing methodology for detecting change with bistable circuitry dynamics tailoring[J]. Applied Physics Letters, 2013, 102(20): 1695-52.
[17] Kim J, Harne R L, Wang K W. Enhancing structural damage identification robustness to noise and damping with integrated bistable and adaptive piezoelectric circuitry[J]. Journal of Vibration and Acoustics, 2015,137(1): 011005.
[18] Kim J, Harne R L, Wang K W. Predicting non-stationary and stochastic activation of saddle-node bifurcation[J]. Journal of Computational and Nonlinear Dynamics, 2017, 12(1): 011009.
[19] Tamasevicius A, Mykolaitis G, Pyragas V, et al. Delayed feedback control of periodic orbits without torsion in nonautonomous chaotic systems: theory and experiment[J].Physics Review E Statistical Nonlinear and Soft Matter Physics, 2007,76(2): 026203.
[20] duToit N E, Wardle B L, Kim S-G. Design consideration for MEMS-scale piezoelectric mechanical vibration energy harvesters[J]. Integrated Ferroelectrics,2005,71(1):121—160.
Abstract: The bistable circuitry is a nonlinear circuitry with two potential wells, whose saddle-node bifurcation phenomena could be applied to structural health monitoring based on vibration signals. However, the depth of the potential well of the bistable circuitry presented in previous works is not tunable, leading to the fixed saddle-node bifurcation boundary, and hence the application range of the bistable circuitry is restricted. This study proposes an improved bistable circuitry that allows tunable potential well depth, enabling the saddle-node bifurcation boundary to change. Firstly, the principle of the bistable circuitry-based structural health monitoring and the bistable circuitry with tunable potential well depth are briefly introduced. Secondly, the nonlinear dynamic nature is discussed in detail, with the help of numerical validation by Multisim. Finally, numerical simulation is performed to study the detection of the tiny structural stiffness variation of a cantilever beam by applying the bistable circuitry with tunable potential well depth, which is compared with the case that utilized previous bistable circuitry. The results show that the bistable circuitry with tunable potential well depth exhibits saddle-node bifurcation under slight excitations when its first modal stiffness decreases by 2%, significantly indicating the tiny structural variation. However, the previous bistable circuitry does not show bifurcation, leading to the failure of identifying the tiny structural variation.
Key words: structural health monitoring; bistable circuitry; vibration signal; saddle-node bifurcation
作者簡介: 杨 恺(1986—),男,讲师。电话:(027)87540185;E-mail:kaiyang@hust.edu.cn