黄土垂直节理形成机理的试验模拟
李同录+王红+付昱凯+梁燕
基金项目:国家自然科学基金项目(41372329);国家重点基础研究发展计划(“九七三”计划)项目(2014CB744701)
摘要:通过室内试验模拟自然沉积作用下黄土中水的渗透性,发现黄土垂直节理是地表水入渗过程中形成的。根据室内模型试验,建立一理想颗粒排列模型,利用TEN15型张力计实测的土水特征曲线,计算从饱和到非饱和状态的变化过程中土颗粒的相互作用力的变化。结果表明:地表水在下渗过程中,初始沉积的黄土含水量发生变化,基质吸力和表面张力产生的粒间引力也发生变化;粒间引力会随着粒间距的减小而急剧增大,而且其随含水量的变化规律与粒间距的大小有很大关系;由于初始沉积的黄土粉粒结构疏松,粒间有极弱的支撑,改变含水量状态产生的粒间引力在较小的量级便会使土颗粒相互靠近,而颗粒间距减小,则粒间引力急剧增大,土体整体收缩导致局部拉裂形成垂向裂隙,即垂直节理。
关键词:黄土;垂直节理;形成机理;模型试验;渗透;表面张力;基质吸力;粒间引力
中图分类号:P642.13+1文献标志码:A
Test Simulation on the Forming Mechanism of Loess Vertical Joints
LI Tonglu1, WANG Hong1, FU Yukai1, LIANG Yan2,3
(1. School of Geology Engineering and Geomatics, Changan University, Xian 710054, Shaanxi, China;
2.School of Highway, Changan University, Xian 710064, Shaanxi, China; 3. Key Laboratory for Special
Area Highway Engineering of Ministry of Education, Changan University, Xian 710064, Shaanxi, China)
Abstract: It is observed that the loess vertical joints form in the process of rainfall penetration by the model test for simulating loess penetration under the sedimentation. According to the model test, an ideal model of soil particle arrangement was built; based on the soilwater characteristic curve of loess sample measured by TEN15 tension meter, the interaction force between soil particles under different moisture contents was induced by the relationship between matric suction and curvature radius of water shrink film. The results show that the vertical joint is caused by the change of interparticle force because of the matric suction and surface tension in the process of rainfall penetration; the interparticle force increases sharply with the decrease of the interparticle distance, and the relationship between the interparticle force and water content is significantly influenced by the interparticle distance; the structure of initial sediment loess is loose and the support of interparticle is weak, so that the particles will be close to each other because of the interparticle force at small order caused by the change of water content, and the interparticle force increases sharply with the decrease of the interparticle distance, and then the shrinkage of soil leads to local cracks and forms vertical joints.
Key words: loess; vertical joint; forming mechanism; model test; penetration; surface tension; matric suction; interparticle force
0引言
垂直节理是黄土中普遍发育的一种独特构造,是非构造成因的一种破裂。垂直节理一般是地表水或地下水的运移通道,地表水灌入地下后,常沿节理发生潜蚀,使其导水性增强,加剧黄土的侵蚀,常对各类工程造成危害,因此,学者们对黄土区的渗透性进行了大量研究[19]。
黄土中垂直节理的存在是被广泛公认的现象,关于其形成机理的研究较少,认识尚不统一[10]。骆进等通过模拟试验研究认为黄土不均匀湿陷产生的内裂缝在上覆压力作用下受到拉力作用,当达到土体抗拉强度后,裂缝在竖直方向上扩张而形成垂直节理。采用扰动土样,设置不同厚度的土层,通过浸水产生不均匀湿陷,在厚度变化处产生湿陷裂缝;现场观察表明,黄土垂直节理和沉积时的地表起伏没有关系,在完全水平层状的黄土中同样有垂直节理发育,而且垂直节理很少有竖向错位,以水平拉张为主[11]。王正贵等则认为重力在黄土体中大孔洞上下边缘所引起的水平拉应力是导致黄土产生垂直节理的基本原因,将垂直节理的出现归结为上覆荷载形成的水平张力[12]。而实际上,黄土是风积的散粒体,在横向有约束的情况下,重力只能产生水平挤压,不可能产生张力。冯连昌等对黄土节理的地域分布和外观形状进行过考察和分类,提出结构特征、水平张力和风化作用是黄土中垂直节理形成的主要原因,但并没有具体的讨论分析[1314]。
黄土非饱和渗透试验中,表层集中渗水后,黄土从饱和状态到非饱和状态转变的过程中产生体积收缩,试样上部土体周围产生距离大致相等的竖直方向的张性裂缝,而且水分入渗深度有限,垂直裂隙只能在一定深度范围内出现[12,15]。这与野外垂直节理的表现一致,而且整个试验过程与自然条件下雨水自地表入渗到地下、浅层黄土经历饱和到非饱和的过程是一致的。因此,该试验现象可以反映自然黄土中垂直节理的形成过程。试验表明,垂直裂隙的出现是由于黄土的非饱和特性所决定的,主要是黄土由饱和状态到非饱和状态转变中基质吸力产生的粒间作用力的变化引起的。笔者将进一步分析了水分变化在黄土中引起的基质吸力变化,揭示黄土中垂直节理的形成机理。
在模拟风积黄土的非饱和渗透性时,黄土在地表渗水过程中会出现垂直楔形裂隙,此现象和黄土垂直节理的形成类似。基于此,笔者通过建立一理想模型,测定黄土土水特征曲线;当含水量由高到低变化时,计算不同土粒间距黄土颗粒间由水气界面表面张力和基质吸力引起的粒间引力以及由此产生的拉应力。
1试验模型及方法
试验土样取自陕西省泾阳县泾河南岸的黄土塬南缘的马兰黄土(Q3),现场分别取了原状土样和扰动土样。利用原状土样测得试验土基本物理性质:用环刀法测得天然密度为
136 g·cm-3,用烘干法测得含水量(质量比,下同)为63%,用比重计法测得土粒密度为269 g·cm-3,用搓条法得到塑限为198%,用丢锥法测得液限为 30.2%。通过测得的数据计算得到该黄土的孔隙比为1101,干密度为128 g·cm-3 ,塑性指数为104%,液性指数为-13。
室内模型试验装置为:壁厚7 mm、内径为236 cm、高H为2 m的圆柱形有机玻璃桶,桶壁一侧有一排直径均为8 mm的圆形小孔,孔间隔为5 cm(图1)。将扰动土样风干碾压,用0.5 mm的筛均匀筛到模型试验桶中,模拟黄土的自然沉积过程。整个过程中保持土颗粒自然沉积直到容器内的土样达到所需高度(1.8 m),每次筛入土时都要称重,累积筛入土的总质量m为91.1 kg。利用烘干法测得模型试验桶中土样含水量w为26%。然后,在土样顶部施加静载(荷载为10 kg的砂袋和20 kg砝码),压密土样3 d,模型试验桶内土样高度沉降稳定,取出砂袋和砝码。此时测得土样的高度h为178 cm。在土样表面均匀铺上10 cm厚的细砂,防止在渗水过程中试样表层板结或沿侧壁集中下渗。土样密度ρ和孔隙比e计算公式为
ρ=mV=4mhπD2(1)
e=Gs(1+w)ρ(2)
式中:h为压密后模型试验桶中土样高度;D为模型试验桶内径;Gs为土粒相对密度。
由式(1)、(2)计算得到模型试验桶内土样的平均密度为1.17 g·cm-3,孔隙比e为1.359。利用TST55渗透仪测得与模型试验桶中相同密度土样的饱和渗透系数k为6.42×10-4m·s-1。
图1模型试验桶及渗水后上部开裂现象
Fig.1Model Test Barrel and Fissure Phenomena After Water Penetration in the Top
试验准备工作完成后,采用洒水器向砂层表面喷水,模拟自然降雨。持续缓慢喷水30 min,总共加水1 500 mL,水分透过砂层在黄土表面形成饱和带。然后静置观察,在含水量梯度作用下,饱和带水分向下迁移,土样周围竖向裂缝出现。经过60 min之后,黄土试样上部形成9条距离大致相等的竖直方向的楔形张性裂缝[图1(b)],此时在裂缝发展的地方用掏土烘干法测得土样含水量为32%,各条垂直裂缝的长度和宽度见表1。模型试验桶顶部密封,没有继续加水,周围竖向裂缝没有继续发展,保持初始状态。在竖向裂缝形成过程中,由于黄土湿陷性,土样局部产生横向裂缝,并随时间持续扩张。
表1模型试验桶中垂直裂缝大小
Tab.1Sizes of Vertical Joints in Model Test Barrel
裂缝编号裂缝深度/cm裂缝顶宽/mm
110.33.2
210.33.3
38.02.3
49.02.4
58.02.5
69.53.5
76.03.3
89.03.2
95.03.2
2黄土垂直节理形成机理
模型试验表明,黄土中垂直节理的形成与水的作用有密切关系。为了分析水在垂直节理形成中的作用,建立一个理想化的模型,将黄土颗粒看成大小相同的均匀球体,球体直径等于黄土试样的平均粒径,并认为土颗粒均匀排列,不考虑细粒在粗粒之间的接触支撑作用。
根据室内模拟试验测得模型试验桶中黄土的基本物理指标(Gs、ρ、w和e);然后,利用激光粒度分析仪测得模型试验桶内黄土的粒径级配曲线(图2),得到颗粒的中位粒径d50为15.1 μm,则单个土颗粒平均体积Vp为
Vp=16πd350=1 803 μm3(3)
图2黄土试样的粒度累积曲线
Fig.2Particle Size Accumulated Curve of the Loess Sample
选择边长为100 μm的立方体模型,则模型总体积V为1.0×106 μm3,其中固体颗粒部分的总体积Vs为
Vs=V1+e=423 908 μm3(4)
则土颗粒的个数N为
N=VsVp=235
试验土样为扰动土样,无固结,因此,假定土粒按最疏松的一种情况排列,即土粒中心也按立方体排列,则沿立方体模型棱边任一方向的土粒数n为
n=3N=6.2
则2个土粒的中心间距ac为
ac=161 μm
土粒数取整数,按每个方向6个土颗粒,得到(100×100)μm2的水平截面,土粒排列见图3。土颗粒间的中心间距为16.1 μm,土粒之间的净间距为1.0 μm,由此可见土颗粒之间有收缩空间。
图3土颗粒排列模型(单位:μm)
Fig.3Arrangement Model of Soil Particle (Unit:μm)
沉积开始后,表层土体疏散干燥,粒间没有水分。集中渗水后,表层颗粒间空隙充满水分,土体饱和。饱和带水分的向下迁移或蒸发等引起土体从饱和状态向非饱和状态发展。此时有空气进入土体中,水气界面产生表面张力,表面张力作用方向与收缩膜表面相切,其大小主要与温度有关。水气界面上的孔隙水压力uw为负值(相对大气压来说),水气共同作用产生基质吸力ua-uw,其中ua为孔隙气压力。基质吸力是由负孔隙水压力和表面张力综合作用在非饱和粒状颗粒骨架内产生的粒间作用力[15],宏观表现为拉力作用,可使作用范围内的土颗粒相互靠近(图4)。
图4高含水量到低含水量状态中土颗粒间收缩膜形态的发展过程
Fig.4Development Process of Shrink Film Form Between
Soil Particles from High Water Content to Low
收缩水膜受到土颗粒表面向外的拉力,土颗粒则受到水膜向内的切向拉力,因此,任意两个土颗粒受表面张力作用都有相互靠近的趋势。垂直方向上有重力作用,土粒整体向下运移;而横向上仅有张力作用,会在薄弱处拉裂,宏观上表现为垂直方向的裂缝。
以上分析表明,土颗粒间的吸引力变化是垂直节理形成的基本原因。为了定量分析黄土从饱和到非饱和状态过程中土颗粒之间作用力的变化,需要测定试验土样的土水特征曲线。实验室常用的土水特征曲线测定方法包括轴平移法[1617]、张力计法[18]等。笔者采用TEN15张力计测定了试验土样的土水特征曲线。
具体试验方法为:在体积为27 cm×17 cm×15 cm的制样盒中制备干密度与模型试验桶中相同的土样;然后,通过逐步减湿(自饱和到干),配置不同含水量,每种含水状态密封静置7 d,使土样内水分分布均匀;再在试样中心打孔,孔径略大于吸力传感器探头直径,孔深8 cm左右;将张力计排气、充满水后,竖直向下插入孔中,用相同湿度的土样填充试验钻孔与张力计间的空隙;等张力计读数稳定后,测得相应含水量下试样的吸力值,同时取出探头,采集探头附近土样少许,用烘干法测定土样的含水量。利用式(5)将实测的质量含水量转化为体积含水量[19],绘出试样土水特征曲线(图5)。
图5试样土水特征曲线
Fig.5Soilwater Characteristic Curve of the Sample
质量含水量w转化为体积含水量θw的公式为
θw=SwGsSr+wGs(5)
式中:Sr为饱和度。
非饱和土中基质吸力和表面张力的关系为[6]
(ua-uw)=Ts(1r1-1r2)(6)
其中r1=acos α-R
r2=atan α-r1
式中: Ts为表面张力;r1为收缩膜半径;r2为毛细水柱半径;a为两个土颗粒中心间距的一半;α为填充角;R为理想球状土颗粒半径。
图6显示了两个土颗粒在非饱和状态下的微观作用力。所有力的合力Fsum为
Fsum=uaπR2-(ua-uw)πr22-2πr2Ts(7)
图6土颗粒受力状态
Fig.6Strained Condition of the Soil Particles
空气压力只会改变土颗粒内力的大小,不会改变(ua-uw)和Ts的大小,也就不会改变土颗粒的相互作用力。根据文献[20]~[23],把气压设为0可以得到粒间引力Ps为
Ps=(ua-uw)πr22+2πr2Ts(8)
模型试验加水过程中,土样经历了非饱和→饱和→非饱和过程。这一阶段是土样由松到密的过程,土颗粒在粒间引力作用下相互靠近,为此选择不同的颗粒间距计算粒间引力的大小,以便对比。取温度为25 ℃时的表面张力(72.0 mN·m-1)和理想球状土颗粒的半径(7.55 μm),利用式(6)计算得到不同粒间距下不同含水量对应的平均曲率半径r1和r2,然后再利用式(8)得到对应粒间距的粒间引力与体积含水量的关系曲线(图7)。
图7不同粒间距体积含水量和粒间引力的关系
Fig.7Relationship Between Volume Water Content and
Interparticle Force at Different Distances of the Particles
从图7可以看出:相同体积含水量下,粒间距越小,粒间引力越大;随着体积含水量的减小,不同粒间距的粒间引力差值增大。粒间距一定时,粒间引力随体积含水量的变化趋势有所不同。当粒间距较大(775 μm 根据式(8)也可以得到粒间引力和基质吸力的关系曲线(图8)。从图8可以看出和图7类似的规律。当基质吸力一定时,粒间引力随粒间距离的减小而增大。当粒间距较大(775 μm到755 μm时,粒间接触,粒间引力随基质吸力的增大而单调增大。
图8不同粒间距基质吸力和粒间引力的关系
Fig.8Relationship Between Matric Suction and Interparticle Force at Different Distances of the Particles
图9黄土中固、液、气的存在形式
Fig.9Constitutive Forms of Solid, Liquid and Gas Phases in the Loess
由式(8)可见,颗粒间的引力由两部分组成,第一部分和基质吸力有关,第二部分与水气界面张力有关。土颗粒间不可能产生斥力,和引力相平衡的只有粒间支撑。当没有水入渗时,土粒是散体[图9(a)],粒间没有引力。当表层渗入水时,有短暂的饱和过程,饱和状态时,粒间充满自由水[图9(b)],也没有引力。在重力和水势驱动下,水向下迁移,空气进入,出现水气界面,水气界面上产生表面张力,如果固体颗粒和水中的气体(气泡)都被自由水包围,没有出现固、液、气三相界面[图9(c)],则土仍然表现为饱和性状,粒间也没有引力。当土中的含水量继续减小时,有固、液、气三相界面出现[图9(d)],水气界面上的表面张力和基质吸力开始产生粒间引力,颗粒相互靠近;随着粒间距减小,粒间作用力又增大,使其进一步靠近,最终和支撑力达成平衡。在此过程中,土体在垂直和水平方向都会体积收缩,垂直方向收缩会发生沉陷。此种沉陷和自重湿陷还有区别,自重湿陷是由重力作用引起,此处沉陷除重力作用下的湿陷外,还附加了粒间的吸引力。试验环境下,玻璃壁和土样间部分脱开,部分接触,脱开部分没有约束,自由下沉,吸附部分则受到限制,由此会产生水平方向不连续的拉裂[图1(b)],此次试验总收缩量(即9条竖向裂缝宽度之和)为2.69 cm。水平方向收缩必然导致土体在相对薄弱处拉裂,出现张性裂缝,这和自然界黄土沉积初期的降雨入渗形成垂直节理的过程类似,因此,可以认为黄土中的垂直节理是一种原生节理。
该试样饱和含水量为50.5%,开始出现拉裂缝时的含水量为32.0%,这说明有一段高含水量的非饱和态土体具有饱和土的性状,真正的非饱和特性发生在形成三相界面以后。
为了将微观力和宏观作用力联系起来,计算粒间引力在土体中产生的张应力。根据图4,取粒间距为15.1 μm(即a=7.55 μm),颗粒相互接触,假定在水平和垂直方向各有6个土颗粒(即n=36),其所占的面积S为8 208 μm2,则该层土颗粒和其上层或下层土粒间的接触点也有36个,因此,拉应力σs为
σs=nPsS=4.38×109Ps(9)
式中:Ps为粒间引力,随含水量的变化而变化。
表2列出了在不同含水量下粒间引力、拉应力及相关参数的计算结果。由表2可以看出,随着含水量的减小,基质吸力、粒间引力增大,土体内的拉应力也随之增大。栾茂田等也提出基质吸力必然对两颗粒产生拉力,有促使颗粒靠近的趋势[24]。
从模型试验得到,当产生垂向裂缝时,土样含水量为320%,从表2可以得到此时土的拉应力为1009~1031 kPa。随着含水量的减小,张性裂缝会进一步发展。
笔者通过一个理想模型对黄土中垂直节理的形成机理进行了分析。实际上黄土中的土粒既不是等粒,也不是规则排列,而是大小不同的颗粒随机排列。
由于黄土的风积成因,其颗粒组成以粉粒为主,含少量黏粒和粉砂,分选性良好。由图5可见,该试样黏粒(粒径小于50 μm)占28%,粉粒及粉砂粒(粒径大于500 μm)占72%。对自然黄土的微结构分析表明,由粉粒和粉砂粒等粗颗粒构成骨架,黏粒
表2非饱和状态下土粒间相互作用参数
Tab.2Parameters of Interaction Between Particles for the Unsaturated Soil
含水量/%饱和度/%体积含水量/%基质吸力/kPa弯液面接触角α/(°)收缩膜半径r1/μm毛细水柱半径r2/μm粒间引力/106 N拉应力σs/kPa
5.611.16.473.524.00.712.652.8212.37
</a
</a
10.120.111.564.025.20.792.762.7912.24
15.730.117.956.526.50.882.872.7612.11
21.041.623.838.030.31.193.212.6911.80
23.045.526.222.035.51.723.662.5911.36
27.654.631.510.541.92.594.182.4710.83
31.562.335.93.048.93.944.722.3510.31
39.878.845.31.051.54.584.912.3010.09
注:饱和含水量为505%。
分散在粗颗粒表面和支撑点上作为弱的胶结,形成具有大孔的架空结构,这种结构是黄土具有湿陷性的原因。由此可推测,黄土的实际结构比图3的理想结构模型更加疏松,更容易形成垂直节理。
3结语
(1)在模拟风积黄土的非饱和渗透性时,黄土在地表渗水过程中会出现垂直的楔形裂隙,此现象和黄土垂直节理的形成类似。
(2)通过建立一理想模型,测定黄土土水特征曲线,计算出当含水量由高到低变化时,不同土粒间距黄土颗粒间由水气界面表面张力和基质吸力引起的粒间引力以及由此产生的拉应力。尽管粒间引力和拉应力很小,但对于初始沉积、结构疏松、具有弱支撑的黄土来讲,足以引起收缩变形,垂直方向收缩导致其沉陷,水平方向收缩导致其在薄弱处拉裂形成张裂隙,这就是黄土垂直节理的形成机理。
(3)黄土的垂直节理是一种原生节理,在黄土沉积初期,由于降雨入渗导致黄土处于非饱和状态,从而在粒间产生引力导致节理产生。
参考文献:
References:
[1]李萍,李同录,王阿丹,等.黄土中水分迁移规律现场试验研究[J].岩土力学,2013,34(5):13311339.
LI Ping,LI Tonglu,WANG Adan,et al.Insitu Test Research on Regularities of Water Migration in Loess[J].Rock and Soil Mechanics,2013,34(5):13311339.
[2]梁燕,谢永利,刘保健,等.非饱和黄土渗透性的试验研究[J].水文地质工程地质,2006,33(2):2730.
LIANG Yan,XIE Yongli,LIU Baojian,et al.A Test Study of the Permeability of Unsaturated Typical Loess[J].Hydrogeology and Engineering Geology,2006,33(2):2730.
[3]蔺晓燕,李同录,赵纪飞,等.甘肃黑方台黄土固结渗透特性试验研究[J].水文地质工程地质,2014,41(1):4147.
LIN Xiaoyan,LI Tonglu,ZHAO Jifei,et al.Permeability Characteristics of Loess Under Different Consolidation Pressures in the Heifangtai Platform[J].Hydrogeology and Engineering Geology,2014,41(1):4147.
[4]梁燕,邢鲜丽,李同录,等.晚更新世黄土渗透性的各向异性及其机制研究[J].岩土力学,2012,33(5):13131318.
LIANG Yan,XING Xianli,LI Tonglu,et al.Study of the Anisotropic Permeability and Mechanism of Q3 Loess[J].Rock and Soil Mechanics,2012,33(5):13131318.
[5]王福恒,李家春,田伟平.黄土边坡降雨入渗规律试验[J].长安大学学报:自然科学版,2009,29(4):2024.
WANG Fuheng,LI Jiachun,TIAN Weiping.Test on Rainfall Filtration in Loess Slope[J].Journal of Changan University:Natural Science Edition,2009,29(4):2024.
[6]李家春,崔世富,田伟平.公路边坡降雨侵蚀特征及土的崩解试验[J].长安大学学报:自然科学版,2007,27(1):2326,49.
LI Jiachun,CUI Shifu,TIAN Weiping.Erosion Characteristic of Road Slope and Test of Soil Disintegration[J].Journal of Changan University:Natural Science Edition,2007,27(1):2326,49.
[7]王磊,马骉.黄土地区公路排水系统病害防治[J].长安大学学报:自然科学版,2003,23(1):1518.
WANG Lei,MA Biao.Prevention and Treatment for Disasters of Highway Drainage System in Loess Area[J].Journal of Changan University:Natural Science Edition,2003,23(1):1518.
[8]刘巍然,高江平.压实黄土路基中水分迁移的数值模拟[J].长安大学学报:自然科学版,2006,26(4):57.
LIU Weiran,GAO Jiangping.Numerical Modelling on Water Migration in Loess Subgrade[J].Journal of Changan University:Natural Science Edition,2006,26(4):57.
[9]雷胜友,李志远,王吉庆,等.含水量对非饱和黄土强度的影响[J].交通运输工程学报,2012,12(1):15.
LEI Shengyou,LI Zhiyuan,WANG Jiqing,et al.Effect of Water Content on Strength of Unsaturated Loess[J].Journal of Traffic and Transportation Engineering,2012,12(1):15.
[10]王铁行,王娟娟,房江锋.垂直节理影响的黄土隧道洞口段稳定性分析[J].地下空间与工程学报,2012,8(1):6570.
WANG Tiehang,WANG Juanjuan,FANG Jiangfeng.Stability Analysis of Loess Tunnel Entrance Section Considering the Impact of Vertical Joints[J].Chinese Journal of Underground Space and Engineering,2012,8(1):6570.
[11]骆进,项伟,吴云刚,等.陕北黄土垂直节理形成机理的试验研究[J].长江科学院院报,2010,27(3):3841,45.
LUO Jin,XIANG Wei,WU Yungang,et al.Experimental Study on Formation of Loess Vertical Joints in Northern Shaanxi Province[J].Journal of Yangtze River Scientific Research Institute,2010,27(3):3841,45.
[12]王正贵,康国瑾,马崇武,等.关于黄土垂直节理形成机制的探讨[J].中国科学:B辑,1993,23(7):765770.
WANG Zhenggui,KANG Guojin,MA Chongwu,et al.The Discussion on Formation of Loess Vertical Joints[J].Science in China:Series B,1993,23(7):765770.
[13]冯连昌,郑晏武.中国湿陷性黄土[M].北京:中国铁道出版社,1982.
FENG Lianchang,ZHENG Yanwu.Collapse Loess in China[M].Beijing:China Railway Publishing House,1982.
[14]王永炎,林在贵.中国黄土的结构特征及物理力学性质[M].北京:科学出版社,1990.
WANG Yongyan,LIN Zaigui.The Structural Characteristics and Physics Mechanical Properties of Loess in China[M].Beijing:Science Press,1990.
[15]LU N,LIKOS W J.Unsaturated Soil Mechanics[M].New York:Wiley,2004.
[16]梅岭,姜朋明,李鹏,等.非饱和土的土水特征曲线试验研究[J].岩土工程学报,2013,35(增1):124128.
MEI Ling,JIANG Pengming,LI Peng,et al.Soilwater Characteristic Curve Tests on Unsaturated Soil[J].Chinese Journal of Geotechnical Engineering,2013,35(S1):124128.
[17]宋亚亚,卢廷浩,季李通,等.应力作用下非饱和土土水特征曲线研究[J].水利与建筑工程学报,2012,10(6):147150.
SONG Yaya,LU Tinghao,JI Litong,et al.Research on Soilwater Characteristic Curve of Unsaturated Soil Under Stress State[J].Journal of Water Resources and Architectural Engineering,2012,10(6):147150.
[18]李萍,李同录,王红,等.非饱和黄土土水特征曲线与渗透系数 Childs & CollisGeroge模型预测[J].岩土力学,2013,34(增2):184189.
LI Ping,LI Tonglu,WANG Hong,et al.Soilwater Characteristic Curve and Permeability Perdiction on Childs & CollisGeroge Model of Unsaturated Loess[J].Rock and Soil Mechanics,2013,34(S2):184189.
[19]FREDLUND D G,RAHARDJO H.Soil Mechanics for Unsaturated Soils[M].New York:John Wiley and Sons,1993.
[20]LIU S H,SUN D A,WANG Y S.Numerical Study of Soil Collapse Behavior by Discrete Element Modelling[J].Computers and Geotechnics,2003,30(5):399408.
[21]GESSINGER G H.A Modified Model for the Sintering of Tungsten with Nickel Additions[J].Journal of the Less Common Metals,1972,27(2):129141.
[22]HEADY R B,CAHN J W.An Analysis of the Capillary Forces in Liquidphase Sintering of Spherical Particles[J].Metallurgical Transactions,1970,1(1):185189.
[23]KEMPER W D,ROSENAU R C.Soil Cohesion as Affected by Time and Water Content[J].Soil Science Society of America Journal,1984,48(5):10011006.
[24]栾茂田,李顺群,杨庆.对“非饱和土的基质吸力和张力吸力”讨论的答复[J].岩土工程学报,2007,29(7):11131114.
LUAN Maotian,LI Shunqun,YANG Qing.Reply for the Discussion on “Matric Suction and Tension Suction of Unsaturated Soils”[J].Chinese Journal of Geotechnical Engineering,2007,29(7):11131114.
WANG Tiehang,WANG Juanjuan,FANG Jiangfeng.Stability Analysis of Loess Tunnel Entrance Section Considering the Impact of Vertical Joints[J].Chinese Journal of Underground Space and Engineering,2012,8(1):6570.
[11]骆进,项伟,吴云刚,等.陕北黄土垂直节理形成机理的试验研究[J].长江科学院院报,2010,27(3):3841,45.
LUO Jin,XIANG Wei,WU Yungang,et al.Experimental Study on Formation of Loess Vertical Joints in Northern Shaanxi Province[J].Journal of Yangtze River Scientific Research Institute,2010,27(3):3841,45.
[12]王正贵,康国瑾,马崇武,等.关于黄土垂直节理形成机制的探讨[J].中国科学:B辑,1993,23(7):765770.
WANG Zhenggui,KANG Guojin,MA Chongwu,et al.The Discussion on Formation of Loess Vertical Joints[J].Science in China:Series B,1993,23(7):765770.
[13]冯连昌,郑晏武.中国湿陷性黄土[M].北京:中国铁道出版社,1982.
FENG Lianchang,ZHENG Yanwu.Collapse Loess in China[M].Beijing:China Railway Publishing House,1982.
[14]王永炎,林在贵.中国黄土的结构特征及物理力学性质[M].北京:科学出版社,1990.
WANG Yongyan,LIN Zaigui.The Structural Characteristics and Physics Mechanical Properties of Loess in China[M].Beijing:Science Press,1990.
[15]LU N,LIKOS W J.Unsaturated Soil Mechanics[M].New York:Wiley,2004.
[16]梅岭,姜朋明,李鹏,等.非饱和土的土水特征曲线试验研究[J].岩土工程学报,2013,35(增1):124128.
MEI Ling,JIANG Pengming,LI Peng,et al.Soilwater Characteristic Curve Tests on Unsaturated Soil[J].Chinese Journal of Geotechnical Engineering,2013,35(S1):124128.
[17]宋亚亚,卢廷浩,季李通,等.应力作用下非饱和土土水特征曲线研究[J].水利与建筑工程学报,2012,10(6):147150.
SONG Yaya,LU Tinghao,JI Litong,et al.Research on Soilwater Characteristic Curve of Unsaturated Soil Under Stress State[J].Journal of Water Resources and Architectural Engineering,2012,10(6):147150.
[18]李萍,李同录,王红,等.非饱和黄土土水特征曲线与渗透系数 Childs & CollisGeroge模型预测[J].岩土力学,2013,34(增2):184189.
LI Ping,LI Tonglu,WANG Hong,et al.Soilwater Characteristic Curve and Permeability Perdiction on Childs & CollisGeroge Model of Unsaturated Loess[J].Rock and Soil Mechanics,2013,34(S2):184189.
[19]FREDLUND D G,RAHARDJO H.Soil Mechanics for Unsaturated Soils[M].New York:John Wiley and Sons,1993.
[20]LIU S H,SUN D A,WANG Y S.Numerical Study of Soil Collapse Behavior by Discrete Element Modelling[J].Computers and Geotechnics,2003,30(5):399408.
[21]GESSINGER G H.A Modified Model for the Sintering of Tungsten with Nickel Additions[J].Journal of the Less Common Metals,1972,27(2):129141.
[22]HEADY R B,CAHN J W.An Analysis of the Capillary Forces in Liquidphase Sintering of Spherical Particles[J].Metallurgical Transactions,1970,1(1):185189.
[23]KEMPER W D,ROSENAU R C.Soil Cohesion as Affected by Time and Water Content[J].Soil Science Society of America Journal,1984,48(5):10011006.
[24]栾茂田,李顺群,杨庆.对“非饱和土的基质吸力和张力吸力”讨论的答复[J].岩土工程学报,2007,29(7):11131114.
LUAN Maotian,LI Shunqun,YANG Qing.Reply for the Discussion on “Matric Suction and Tension Suction of Unsaturated Soils”[J].Chinese Journal of Geotechnical Engineering,2007,29(7):11131114.
WANG Tiehang,WANG Juanjuan,FANG Jiangfeng.Stability Analysis of Loess Tunnel Entrance Section Considering the Impact of Vertical Joints[J].Chinese Journal of Underground Space and Engineering,2012,8(1):6570.
[11]骆进,项伟,吴云刚,等.陕北黄土垂直节理形成机理的试验研究[J].长江科学院院报,2010,27(3):3841,45.
LUO Jin,XIANG Wei,WU Yungang,et al.Experimental Study on Formation of Loess Vertical Joints in Northern Shaanxi Province[J].Journal of Yangtze River Scientific Research Institute,2010,27(3):3841,45.
[12]王正贵,康国瑾,马崇武,等.关于黄土垂直节理形成机制的探讨[J].中国科学:B辑,1993,23(7):765770.
WANG Zhenggui,KANG Guojin,MA Chongwu,et al.The Discussion on Formation of Loess Vertical Joints[J].Science in China:Series B,1993,23(7):765770.
[13]冯连昌,郑晏武.中国湿陷性黄土[M].北京:中国铁道出版社,1982.
FENG Lianchang,ZHENG Yanwu.Collapse Loess in China[M].Beijing:China Railway Publishing House,1982.
[14]王永炎,林在贵.中国黄土的结构特征及物理力学性质[M].北京:科学出版社,1990.
WANG Yongyan,LIN Zaigui.The Structural Characteristics and Physics Mechanical Properties of Loess in China[M].Beijing:Science Press,1990.
[15]LU N,LIKOS W J.Unsaturated Soil Mechanics[M].New York:Wiley,2004.
[16]梅岭,姜朋明,李鹏,等.非饱和土的土水特征曲线试验研究[J].岩土工程学报,2013,35(增1):124128.
MEI Ling,JIANG Pengming,LI Peng,et al.Soilwater Characteristic Curve Tests on Unsaturated Soil[J].Chinese Journal of Geotechnical Engineering,2013,35(S1):124128.
[17]宋亚亚,卢廷浩,季李通,等.应力作用下非饱和土土水特征曲线研究[J].水利与建筑工程学报,2012,10(6):147150.
SONG Yaya,LU Tinghao,JI Litong,et al.Research on Soilwater Characteristic Curve of Unsaturated Soil Under Stress State[J].Journal of Water Resources and Architectural Engineering,2012,10(6):147150.
[18]李萍,李同录,王红,等.非饱和黄土土水特征曲线与渗透系数 Childs & CollisGeroge模型预测[J].岩土力学,2013,34(增2):184189.
LI Ping,LI Tonglu,WANG Hong,et al.Soilwater Characteristic Curve and Permeability Perdiction on Childs & CollisGeroge Model of Unsaturated Loess[J].Rock and Soil Mechanics,2013,34(S2):184189.
[19]FREDLUND D G,RAHARDJO H.Soil Mechanics for Unsaturated Soils[M].New York:John Wiley and Sons,1993.
[20]LIU S H,SUN D A,WANG Y S.Numerical Study of Soil Collapse Behavior by Discrete Element Modelling[J].Computers and Geotechnics,2003,30(5):399408.
[21]GESSINGER G H.A Modified Model for the Sintering of Tungsten with Nickel Additions[J].Journal of the Less Common Metals,1972,27(2):129141.
[22]HEADY R B,CAHN J W.An Analysis of the Capillary Forces in Liquidphase Sintering of Spherical Particles[J].Metallurgical Transactions,1970,1(1):185189.
[23]KEMPER W D,ROSENAU R C.Soil Cohesion as Affected by Time and Water Content[J].Soil Science Society of America Journal,1984,48(5):10011006.
[24]栾茂田,李顺群,杨庆.对“非饱和土的基质吸力和张力吸力”讨论的答复[J].岩土工程学报,2007,29(7):11131114.
LUAN Maotian,LI Shunqun,YANG Qing.Reply for the Discussion on “Matric Suction and Tension Suction of Unsaturated Soils”[J].Chinese Journal of Geotechnical Engineering,2007,29(7):11131114.
基金项目:国家自然科学基金项目(41372329);国家重点基础研究发展计划(“九七三”计划)项目(2014CB744701)
摘要:通过室内试验模拟自然沉积作用下黄土中水的渗透性,发现黄土垂直节理是地表水入渗过程中形成的。根据室内模型试验,建立一理想颗粒排列模型,利用TEN15型张力计实测的土水特征曲线,计算从饱和到非饱和状态的变化过程中土颗粒的相互作用力的变化。结果表明:地表水在下渗过程中,初始沉积的黄土含水量发生变化,基质吸力和表面张力产生的粒间引力也发生变化;粒间引力会随着粒间距的减小而急剧增大,而且其随含水量的变化规律与粒间距的大小有很大关系;由于初始沉积的黄土粉粒结构疏松,粒间有极弱的支撑,改变含水量状态产生的粒间引力在较小的量级便会使土颗粒相互靠近,而颗粒间距减小,则粒间引力急剧增大,土体整体收缩导致局部拉裂形成垂向裂隙,即垂直节理。
关键词:黄土;垂直节理;形成机理;模型试验;渗透;表面张力;基质吸力;粒间引力
中图分类号:P642.13+1文献标志码:A
Test Simulation on the Forming Mechanism of Loess Vertical Joints
LI Tonglu1, WANG Hong1, FU Yukai1, LIANG Yan2,3
(1. School of Geology Engineering and Geomatics, Changan University, Xian 710054, Shaanxi, China;
2.School of Highway, Changan University, Xian 710064, Shaanxi, China; 3. Key Laboratory for Special
Area Highway Engineering of Ministry of Education, Changan University, Xian 710064, Shaanxi, China)
Abstract: It is observed that the loess vertical joints form in the process of rainfall penetration by the model test for simulating loess penetration under the sedimentation. According to the model test, an ideal model of soil particle arrangement was built; based on the soilwater characteristic curve of loess sample measured by TEN15 tension meter, the interaction force between soil particles under different moisture contents was induced by the relationship between matric suction and curvature radius of water shrink film. The results show that the vertical joint is caused by the change of interparticle force because of the matric suction and surface tension in the process of rainfall penetration; the interparticle force increases sharply with the decrease of the interparticle distance, and the relationship between the interparticle force and water content is significantly influenced by the interparticle distance; the structure of initial sediment loess is loose and the support of interparticle is weak, so that the particles will be close to each other because of the interparticle force at small order caused by the change of water content, and the interparticle force increases sharply with the decrease of the interparticle distance, and then the shrinkage of soil leads to local cracks and forms vertical joints.
Key words: loess; vertical joint; forming mechanism; model test; penetration; surface tension; matric suction; interparticle force
0引言
垂直节理是黄土中普遍发育的一种独特构造,是非构造成因的一种破裂。垂直节理一般是地表水或地下水的运移通道,地表水灌入地下后,常沿节理发生潜蚀,使其导水性增强,加剧黄土的侵蚀,常对各类工程造成危害,因此,学者们对黄土区的渗透性进行了大量研究[19]。
黄土中垂直节理的存在是被广泛公认的现象,关于其形成机理的研究较少,认识尚不统一[10]。骆进等通过模拟试验研究认为黄土不均匀湿陷产生的内裂缝在上覆压力作用下受到拉力作用,当达到土体抗拉强度后,裂缝在竖直方向上扩张而形成垂直节理。采用扰动土样,设置不同厚度的土层,通过浸水产生不均匀湿陷,在厚度变化处产生湿陷裂缝;现场观察表明,黄土垂直节理和沉积时的地表起伏没有关系,在完全水平层状的黄土中同样有垂直节理发育,而且垂直节理很少有竖向错位,以水平拉张为主[11]。王正贵等则认为重力在黄土体中大孔洞上下边缘所引起的水平拉应力是导致黄土产生垂直节理的基本原因,将垂直节理的出现归结为上覆荷载形成的水平张力[12]。而实际上,黄土是风积的散粒体,在横向有约束的情况下,重力只能产生水平挤压,不可能产生张力。冯连昌等对黄土节理的地域分布和外观形状进行过考察和分类,提出结构特征、水平张力和风化作用是黄土中垂直节理形成的主要原因,但并没有具体的讨论分析[1314]。
黄土非饱和渗透试验中,表层集中渗水后,黄土从饱和状态到非饱和状态转变的过程中产生体积收缩,试样上部土体周围产生距离大致相等的竖直方向的张性裂缝,而且水分入渗深度有限,垂直裂隙只能在一定深度范围内出现[12,15]。这与野外垂直节理的表现一致,而且整个试验过程与自然条件下雨水自地表入渗到地下、浅层黄土经历饱和到非饱和的过程是一致的。因此,该试验现象可以反映自然黄土中垂直节理的形成过程。试验表明,垂直裂隙的出现是由于黄土的非饱和特性所决定的,主要是黄土由饱和状态到非饱和状态转变中基质吸力产生的粒间作用力的变化引起的。笔者将进一步分析了水分变化在黄土中引起的基质吸力变化,揭示黄土中垂直节理的形成机理。
在模拟风积黄土的非饱和渗透性时,黄土在地表渗水过程中会出现垂直楔形裂隙,此现象和黄土垂直节理的形成类似。基于此,笔者通过建立一理想模型,测定黄土土水特征曲线;当含水量由高到低变化时,计算不同土粒间距黄土颗粒间由水气界面表面张力和基质吸力引起的粒间引力以及由此产生的拉应力。
1试验模型及方法
试验土样取自陕西省泾阳县泾河南岸的黄土塬南缘的马兰黄土(Q3),现场分别取了原状土样和扰动土样。利用原状土样测得试验土基本物理性质:用环刀法测得天然密度为
136 g·cm-3,用烘干法测得含水量(质量比,下同)为63%,用比重计法测得土粒密度为269 g·cm-3,用搓条法得到塑限为198%,用丢锥法测得液限为 30.2%。通过测得的数据计算得到该黄土的孔隙比为1101,干密度为128 g·cm-3 ,塑性指数为104%,液性指数为-13。
室内模型试验装置为:壁厚7 mm、内径为236 cm、高H为2 m的圆柱形有机玻璃桶,桶壁一侧有一排直径均为8 mm的圆形小孔,孔间隔为5 cm(图1)。将扰动土样风干碾压,用0.5 mm的筛均匀筛到模型试验桶中,模拟黄土的自然沉积过程。整个过程中保持土颗粒自然沉积直到容器内的土样达到所需高度(1.8 m),每次筛入土时都要称重,累积筛入土的总质量m为91.1 kg。利用烘干法测得模型试验桶中土样含水量w为26%。然后,在土样顶部施加静载(荷载为10 kg的砂袋和20 kg砝码),压密土样3 d,模型试验桶内土样高度沉降稳定,取出砂袋和砝码。此时测得土样的高度h为178 cm。在土样表面均匀铺上10 cm厚的细砂,防止在渗水过程中试样表层板结或沿侧壁集中下渗。土样密度ρ和孔隙比e计算公式为
ρ=mV=4mhπD2(1)
e=Gs(1+w)ρ(2)
式中:h为压密后模型试验桶中土样高度;D为模型试验桶内径;Gs为土粒相对密度。
由式(1)、(2)计算得到模型试验桶内土样的平均密度为1.17 g·cm-3,孔隙比e为1.359。利用TST55渗透仪测得与模型试验桶中相同密度土样的饱和渗透系数k为6.42×10-4m·s-1。
图1模型试验桶及渗水后上部开裂现象
Fig.1Model Test Barrel and Fissure Phenomena After Water Penetration in the Top
试验准备工作完成后,采用洒水器向砂层表面喷水,模拟自然降雨。持续缓慢喷水30 min,总共加水1 500 mL,水分透过砂层在黄土表面形成饱和带。然后静置观察,在含水量梯度作用下,饱和带水分向下迁移,土样周围竖向裂缝出现。经过60 min之后,黄土试样上部形成9条距离大致相等的竖直方向的楔形张性裂缝[图1(b)],此时在裂缝发展的地方用掏土烘干法测得土样含水量为32%,各条垂直裂缝的长度和宽度见表1。模型试验桶顶部密封,没有继续加水,周围竖向裂缝没有继续发展,保持初始状态。在竖向裂缝形成过程中,由于黄土湿陷性,土样局部产生横向裂缝,并随时间持续扩张。
表1模型试验桶中垂直裂缝大小
Tab.1Sizes of Vertical Joints in Model Test Barrel
裂缝编号裂缝深度/cm裂缝顶宽/mm
110.33.2
210.33.3
38.02.3
49.02.4
58.02.5
69.53.5
76.03.3
89.03.2
95.03.2
2黄土垂直节理形成机理
模型试验表明,黄土中垂直节理的形成与水的作用有密切关系。为了分析水在垂直节理形成中的作用,建立一个理想化的模型,将黄土颗粒看成大小相同的均匀球体,球体直径等于黄土试样的平均粒径,并认为土颗粒均匀排列,不考虑细粒在粗粒之间的接触支撑作用。
根据室内模拟试验测得模型试验桶中黄土的基本物理指标(Gs、ρ、w和e);然后,利用激光粒度分析仪测得模型试验桶内黄土的粒径级配曲线(图2),得到颗粒的中位粒径d50为15.1 μm,则单个土颗粒平均体积Vp为
Vp=16πd350=1 803 μm3(3)
图2黄土试样的粒度累积曲线
Fig.2Particle Size Accumulated Curve of the Loess Sample
选择边长为100 μm的立方体模型,则模型总体积V为1.0×106 μm3,其中固体颗粒部分的总体积Vs为
Vs=V1+e=423 908 μm3(4)
则土颗粒的个数N为
N=VsVp=235
试验土样为扰动土样,无固结,因此,假定土粒按最疏松的一种情况排列,即土粒中心也按立方体排列,则沿立方体模型棱边任一方向的土粒数n为
n=3N=6.2
则2个土粒的中心间距ac为
ac=161 μm
土粒数取整数,按每个方向6个土颗粒,得到(100×100)μm2的水平截面,土粒排列见图3。土颗粒间的中心间距为16.1 μm,土粒之间的净间距为1.0 μm,由此可见土颗粒之间有收缩空间。
图3土颗粒排列模型(单位:μm)
Fig.3Arrangement Model of Soil Particle (Unit:μm)
沉积开始后,表层土体疏散干燥,粒间没有水分。集中渗水后,表层颗粒间空隙充满水分,土体饱和。饱和带水分的向下迁移或蒸发等引起土体从饱和状态向非饱和状态发展。此时有空气进入土体中,水气界面产生表面张力,表面张力作用方向与收缩膜表面相切,其大小主要与温度有关。水气界面上的孔隙水压力uw为负值(相对大气压来说),水气共同作用产生基质吸力ua-uw,其中ua为孔隙气压力。基质吸力是由负孔隙水压力和表面张力综合作用在非饱和粒状颗粒骨架内产生的粒间作用力[15],宏观表现为拉力作用,可使作用范围内的土颗粒相互靠近(图4)。
图4高含水量到低含水量状态中土颗粒间收缩膜形态的发展过程
Fig.4Development Process of Shrink Film Form Between
Soil Particles from High Water Content to Low
收缩水膜受到土颗粒表面向外的拉力,土颗粒则受到水膜向内的切向拉力,因此,任意两个土颗粒受表面张力作用都有相互靠近的趋势。垂直方向上有重力作用,土粒整体向下运移;而横向上仅有张力作用,会在薄弱处拉裂,宏观上表现为垂直方向的裂缝。
以上分析表明,土颗粒间的吸引力变化是垂直节理形成的基本原因。为了定量分析黄土从饱和到非饱和状态过程中土颗粒之间作用力的变化,需要测定试验土样的土水特征曲线。实验室常用的土水特征曲线测定方法包括轴平移法[1617]、张力计法[18]等。笔者采用TEN15张力计测定了试验土样的土水特征曲线。
具体试验方法为:在体积为27 cm×17 cm×15 cm的制样盒中制备干密度与模型试验桶中相同的土样;然后,通过逐步减湿(自饱和到干),配置不同含水量,每种含水状态密封静置7 d,使土样内水分分布均匀;再在试样中心打孔,孔径略大于吸力传感器探头直径,孔深8 cm左右;将张力计排气、充满水后,竖直向下插入孔中,用相同湿度的土样填充试验钻孔与张力计间的空隙;等张力计读数稳定后,测得相应含水量下试样的吸力值,同时取出探头,采集探头附近土样少许,用烘干法测定土样的含水量。利用式(5)将实测的质量含水量转化为体积含水量[19],绘出试样土水特征曲线(图5)。
图5试样土水特征曲线
Fig.5Soilwater Characteristic Curve of the Sample
质量含水量w转化为体积含水量θw的公式为
θw=SwGsSr+wGs(5)
式中:Sr为饱和度。
非饱和土中基质吸力和表面张力的关系为[6]
(ua-uw)=Ts(1r1-1r2)(6)
其中r1=acos α-R
r2=atan α-r1
式中: Ts为表面张力;r1为收缩膜半径;r2为毛细水柱半径;a为两个土颗粒中心间距的一半;α为填充角;R为理想球状土颗粒半径。
图6显示了两个土颗粒在非饱和状态下的微观作用力。所有力的合力Fsum为
Fsum=uaπR2-(ua-uw)πr22-2πr2Ts(7)
图6土颗粒受力状态
Fig.6Strained Condition of the Soil Particles
空气压力只会改变土颗粒内力的大小,不会改变(ua-uw)和Ts的大小,也就不会改变土颗粒的相互作用力。根据文献[20]~[23],把气压设为0可以得到粒间引力Ps为
Ps=(ua-uw)πr22+2πr2Ts(8)
模型试验加水过程中,土样经历了非饱和→饱和→非饱和过程。这一阶段是土样由松到密的过程,土颗粒在粒间引力作用下相互靠近,为此选择不同的颗粒间距计算粒间引力的大小,以便对比。取温度为25 ℃时的表面张力(72.0 mN·m-1)和理想球状土颗粒的半径(7.55 μm),利用式(6)计算得到不同粒间距下不同含水量对应的平均曲率半径r1和r2,然后再利用式(8)得到对应粒间距的粒间引力与体积含水量的关系曲线(图7)。
图7不同粒间距体积含水量和粒间引力的关系
Fig.7Relationship Between Volume Water Content and
Interparticle Force at Different Distances of the Particles
从图7可以看出:相同体积含水量下,粒间距越小,粒间引力越大;随着体积含水量的减小,不同粒间距的粒间引力差值增大。粒间距一定时,粒间引力随体积含水量的变化趋势有所不同。当粒间距较大(775 μm 根据式(8)也可以得到粒间引力和基质吸力的关系曲线(图8)。从图8可以看出和图7类似的规律。当基质吸力一定时,粒间引力随粒间距离的减小而增大。当粒间距较大(775 μm到755 μm时,粒间接触,粒间引力随基质吸力的增大而单调增大。
图8不同粒间距基质吸力和粒间引力的关系
Fig.8Relationship Between Matric Suction and Interparticle Force at Different Distances of the Particles
图9黄土中固、液、气的存在形式
Fig.9Constitutive Forms of Solid, Liquid and Gas Phases in the Loess
由式(8)可见,颗粒间的引力由两部分组成,第一部分和基质吸力有关,第二部分与水气界面张力有关。土颗粒间不可能产生斥力,和引力相平衡的只有粒间支撑。当没有水入渗时,土粒是散体[图9(a)],粒间没有引力。当表层渗入水时,有短暂的饱和过程,饱和状态时,粒间充满自由水[图9(b)],也没有引力。在重力和水势驱动下,水向下迁移,空气进入,出现水气界面,水气界面上产生表面张力,如果固体颗粒和水中的气体(气泡)都被自由水包围,没有出现固、液、气三相界面[图9(c)],则土仍然表现为饱和性状,粒间也没有引力。当土中的含水量继续减小时,有固、液、气三相界面出现[图9(d)],水气界面上的表面张力和基质吸力开始产生粒间引力,颗粒相互靠近;随着粒间距减小,粒间作用力又增大,使其进一步靠近,最终和支撑力达成平衡。在此过程中,土体在垂直和水平方向都会体积收缩,垂直方向收缩会发生沉陷。此种沉陷和自重湿陷还有区别,自重湿陷是由重力作用引起,此处沉陷除重力作用下的湿陷外,还附加了粒间的吸引力。试验环境下,玻璃壁和土样间部分脱开,部分接触,脱开部分没有约束,自由下沉,吸附部分则受到限制,由此会产生水平方向不连续的拉裂[图1(b)],此次试验总收缩量(即9条竖向裂缝宽度之和)为2.69 cm。水平方向收缩必然导致土体在相对薄弱处拉裂,出现张性裂缝,这和自然界黄土沉积初期的降雨入渗形成垂直节理的过程类似,因此,可以认为黄土中的垂直节理是一种原生节理。
该试样饱和含水量为50.5%,开始出现拉裂缝时的含水量为32.0%,这说明有一段高含水量的非饱和态土体具有饱和土的性状,真正的非饱和特性发生在形成三相界面以后。
为了将微观力和宏观作用力联系起来,计算粒间引力在土体中产生的张应力。根据图4,取粒间距为15.1 μm(即a=7.55 μm),颗粒相互接触,假定在水平和垂直方向各有6个土颗粒(即n=36),其所占的面积S为8 208 μm2,则该层土颗粒和其上层或下层土粒间的接触点也有36个,因此,拉应力σs为
σs=nPsS=4.38×109Ps(9)
式中:Ps为粒间引力,随含水量的变化而变化。
表2列出了在不同含水量下粒间引力、拉应力及相关参数的计算结果。由表2可以看出,随着含水量的减小,基质吸力、粒间引力增大,土体内的拉应力也随之增大。栾茂田等也提出基质吸力必然对两颗粒产生拉力,有促使颗粒靠近的趋势[24]。
从模型试验得到,当产生垂向裂缝时,土样含水量为320%,从表2可以得到此时土的拉应力为1009~1031 kPa。随着含水量的减小,张性裂缝会进一步发展。
笔者通过一个理想模型对黄土中垂直节理的形成机理进行了分析。实际上黄土中的土粒既不是等粒,也不是规则排列,而是大小不同的颗粒随机排列。
由于黄土的风积成因,其颗粒组成以粉粒为主,含少量黏粒和粉砂,分选性良好。由图5可见,该试样黏粒(粒径小于50 μm)占28%,粉粒及粉砂粒(粒径大于500 μm)占72%。对自然黄土的微结构分析表明,由粉粒和粉砂粒等粗颗粒构成骨架,黏粒
表2非饱和状态下土粒间相互作用参数
Tab.2Parameters of Interaction Between Particles for the Unsaturated Soil
含水量/%饱和度/%体积含水量/%基质吸力/kPa弯液面接触角α/(°)收缩膜半径r1/μm毛细水柱半径r2/μm粒间引力/106 N拉应力σs/kPa
5.611.16.473.524.00.712.652.8212.37
</a
</a
10.120.111.564.025.20.792.762.7912.24
15.730.117.956.526.50.882.872.7612.11
21.041.623.838.030.31.193.212.6911.80
23.045.526.222.035.51.723.662.5911.36
27.654.631.510.541.92.594.182.4710.83
31.562.335.93.048.93.944.722.3510.31
39.878.845.31.051.54.584.912.3010.09
注:饱和含水量为505%。
分散在粗颗粒表面和支撑点上作为弱的胶结,形成具有大孔的架空结构,这种结构是黄土具有湿陷性的原因。由此可推测,黄土的实际结构比图3的理想结构模型更加疏松,更容易形成垂直节理。
3结语
(1)在模拟风积黄土的非饱和渗透性时,黄土在地表渗水过程中会出现垂直的楔形裂隙,此现象和黄土垂直节理的形成类似。
(2)通过建立一理想模型,测定黄土土水特征曲线,计算出当含水量由高到低变化时,不同土粒间距黄土颗粒间由水气界面表面张力和基质吸力引起的粒间引力以及由此产生的拉应力。尽管粒间引力和拉应力很小,但对于初始沉积、结构疏松、具有弱支撑的黄土来讲,足以引起收缩变形,垂直方向收缩导致其沉陷,水平方向收缩导致其在薄弱处拉裂形成张裂隙,这就是黄土垂直节理的形成机理。
(3)黄土的垂直节理是一种原生节理,在黄土沉积初期,由于降雨入渗导致黄土处于非饱和状态,从而在粒间产生引力导致节理产生。
参考文献:
References:
[1]李萍,李同录,王阿丹,等.黄土中水分迁移规律现场试验研究[J].岩土力学,2013,34(5):13311339.
LI Ping,LI Tonglu,WANG Adan,et al.Insitu Test Research on Regularities of Water Migration in Loess[J].Rock and Soil Mechanics,2013,34(5):13311339.
[2]梁燕,谢永利,刘保健,等.非饱和黄土渗透性的试验研究[J].水文地质工程地质,2006,33(2):2730.
LIANG Yan,XIE Yongli,LIU Baojian,et al.A Test Study of the Permeability of Unsaturated Typical Loess[J].Hydrogeology and Engineering Geology,2006,33(2):2730.
[3]蔺晓燕,李同录,赵纪飞,等.甘肃黑方台黄土固结渗透特性试验研究[J].水文地质工程地质,2014,41(1):4147.
LIN Xiaoyan,LI Tonglu,ZHAO Jifei,et al.Permeability Characteristics of Loess Under Different Consolidation Pressures in the Heifangtai Platform[J].Hydrogeology and Engineering Geology,2014,41(1):4147.
[4]梁燕,邢鲜丽,李同录,等.晚更新世黄土渗透性的各向异性及其机制研究[J].岩土力学,2012,33(5):13131318.
LIANG Yan,XING Xianli,LI Tonglu,et al.Study of the Anisotropic Permeability and Mechanism of Q3 Loess[J].Rock and Soil Mechanics,2012,33(5):13131318.
[5]王福恒,李家春,田伟平.黄土边坡降雨入渗规律试验[J].长安大学学报:自然科学版,2009,29(4):2024.
WANG Fuheng,LI Jiachun,TIAN Weiping.Test on Rainfall Filtration in Loess Slope[J].Journal of Changan University:Natural Science Edition,2009,29(4):2024.
[6]李家春,崔世富,田伟平.公路边坡降雨侵蚀特征及土的崩解试验[J].长安大学学报:自然科学版,2007,27(1):2326,49.
LI Jiachun,CUI Shifu,TIAN Weiping.Erosion Characteristic of Road Slope and Test of Soil Disintegration[J].Journal of Changan University:Natural Science Edition,2007,27(1):2326,49.
[7]王磊,马骉.黄土地区公路排水系统病害防治[J].长安大学学报:自然科学版,2003,23(1):1518.
WANG Lei,MA Biao.Prevention and Treatment for Disasters of Highway Drainage System in Loess Area[J].Journal of Changan University:Natural Science Edition,2003,23(1):1518.
[8]刘巍然,高江平.压实黄土路基中水分迁移的数值模拟[J].长安大学学报:自然科学版,2006,26(4):57.
LIU Weiran,GAO Jiangping.Numerical Modelling on Water Migration in Loess Subgrade[J].Journal of Changan University:Natural Science Edition,2006,26(4):57.
[9]雷胜友,李志远,王吉庆,等.含水量对非饱和黄土强度的影响[J].交通运输工程学报,2012,12(1):15.
LEI Shengyou,LI Zhiyuan,WANG Jiqing,et al.Effect of Water Content on Strength of Unsaturated Loess[J].Journal of Traffic and Transportation Engineering,2012,12(1):15.
[10]王铁行,王娟娟,房江锋.垂直节理影响的黄土隧道洞口段稳定性分析[J].地下空间与工程学报,2012,8(1):6570.
WANG Tiehang,WANG Juanjuan,FANG Jiangfeng.Stability Analysis of Loess Tunnel Entrance Section Considering the Impact of Vertical Joints[J].Chinese Journal of Underground Space and Engineering,2012,8(1):6570.
[11]骆进,项伟,吴云刚,等.陕北黄土垂直节理形成机理的试验研究[J].长江科学院院报,2010,27(3):3841,45.
LUO Jin,XIANG Wei,WU Yungang,et al.Experimental Study on Formation of Loess Vertical Joints in Northern Shaanxi Province[J].Journal of Yangtze River Scientific Research Institute,2010,27(3):3841,45.
[12]王正贵,康国瑾,马崇武,等.关于黄土垂直节理形成机制的探讨[J].中国科学:B辑,1993,23(7):765770.
WANG Zhenggui,KANG Guojin,MA Chongwu,et al.The Discussion on Formation of Loess Vertical Joints[J].Science in China:Series B,1993,23(7):765770.
[13]冯连昌,郑晏武.中国湿陷性黄土[M].北京:中国铁道出版社,1982.
FENG Lianchang,ZHENG Yanwu.Collapse Loess in China[M].Beijing:China Railway Publishing House,1982.
[14]王永炎,林在贵.中国黄土的结构特征及物理力学性质[M].北京:科学出版社,1990.
WANG Yongyan,LIN Zaigui.The Structural Characteristics and Physics Mechanical Properties of Loess in China[M].Beijing:Science Press,1990.
[15]LU N,LIKOS W J.Unsaturated Soil Mechanics[M].New York:Wiley,2004.
[16]梅岭,姜朋明,李鹏,等.非饱和土的土水特征曲线试验研究[J].岩土工程学报,2013,35(增1):124128.
MEI Ling,JIANG Pengming,LI Peng,et al.Soilwater Characteristic Curve Tests on Unsaturated Soil[J].Chinese Journal of Geotechnical Engineering,2013,35(S1):124128.
[17]宋亚亚,卢廷浩,季李通,等.应力作用下非饱和土土水特征曲线研究[J].水利与建筑工程学报,2012,10(6):147150.
SONG Yaya,LU Tinghao,JI Litong,et al.Research on Soilwater Characteristic Curve of Unsaturated Soil Under Stress State[J].Journal of Water Resources and Architectural Engineering,2012,10(6):147150.
[18]李萍,李同录,王红,等.非饱和黄土土水特征曲线与渗透系数 Childs & CollisGeroge模型预测[J].岩土力学,2013,34(增2):184189.
LI Ping,LI Tonglu,WANG Hong,et al.Soilwater Characteristic Curve and Permeability Perdiction on Childs & CollisGeroge Model of Unsaturated Loess[J].Rock and Soil Mechanics,2013,34(S2):184189.
[19]FREDLUND D G,RAHARDJO H.Soil Mechanics for Unsaturated Soils[M].New York:John Wiley and Sons,1993.
[20]LIU S H,SUN D A,WANG Y S.Numerical Study of Soil Collapse Behavior by Discrete Element Modelling[J].Computers and Geotechnics,2003,30(5):399408.
[21]GESSINGER G H.A Modified Model for the Sintering of Tungsten with Nickel Additions[J].Journal of the Less Common Metals,1972,27(2):129141.
[22]HEADY R B,CAHN J W.An Analysis of the Capillary Forces in Liquidphase Sintering of Spherical Particles[J].Metallurgical Transactions,1970,1(1):185189.
[23]KEMPER W D,ROSENAU R C.Soil Cohesion as Affected by Time and Water Content[J].Soil Science Society of America Journal,1984,48(5):10011006.
[24]栾茂田,李顺群,杨庆.对“非饱和土的基质吸力和张力吸力”讨论的答复[J].岩土工程学报,2007,29(7):11131114.
LUAN Maotian,LI Shunqun,YANG Qing.Reply for the Discussion on “Matric Suction and Tension Suction of Unsaturated Soils”[J].Chinese Journal of Geotechnical Engineering,2007,29(7):11131114.
WANG Tiehang,WANG Juanjuan,FANG Jiangfeng.Stability Analysis of Loess Tunnel Entrance Section Considering the Impact of Vertical Joints[J].Chinese Journal of Underground Space and Engineering,2012,8(1):6570.
[11]骆进,项伟,吴云刚,等.陕北黄土垂直节理形成机理的试验研究[J].长江科学院院报,2010,27(3):3841,45.
LUO Jin,XIANG Wei,WU Yungang,et al.Experimental Study on Formation of Loess Vertical Joints in Northern Shaanxi Province[J].Journal of Yangtze River Scientific Research Institute,2010,27(3):3841,45.
[12]王正贵,康国瑾,马崇武,等.关于黄土垂直节理形成机制的探讨[J].中国科学:B辑,1993,23(7):765770.
WANG Zhenggui,KANG Guojin,MA Chongwu,et al.The Discussion on Formation of Loess Vertical Joints[J].Science in China:Series B,1993,23(7):765770.
[13]冯连昌,郑晏武.中国湿陷性黄土[M].北京:中国铁道出版社,1982.
FENG Lianchang,ZHENG Yanwu.Collapse Loess in China[M].Beijing:China Railway Publishing House,1982.
[14]王永炎,林在贵.中国黄土的结构特征及物理力学性质[M].北京:科学出版社,1990.
WANG Yongyan,LIN Zaigui.The Structural Characteristics and Physics Mechanical Properties of Loess in China[M].Beijing:Science Press,1990.
[15]LU N,LIKOS W J.Unsaturated Soil Mechanics[M].New York:Wiley,2004.
[16]梅岭,姜朋明,李鹏,等.非饱和土的土水特征曲线试验研究[J].岩土工程学报,2013,35(增1):124128.
MEI Ling,JIANG Pengming,LI Peng,et al.Soilwater Characteristic Curve Tests on Unsaturated Soil[J].Chinese Journal of Geotechnical Engineering,2013,35(S1):124128.
[17]宋亚亚,卢廷浩,季李通,等.应力作用下非饱和土土水特征曲线研究[J].水利与建筑工程学报,2012,10(6):147150.
SONG Yaya,LU Tinghao,JI Litong,et al.Research on Soilwater Characteristic Curve of Unsaturated Soil Under Stress State[J].Journal of Water Resources and Architectural Engineering,2012,10(6):147150.
[18]李萍,李同录,王红,等.非饱和黄土土水特征曲线与渗透系数 Childs & CollisGeroge模型预测[J].岩土力学,2013,34(增2):184189.
LI Ping,LI Tonglu,WANG Hong,et al.Soilwater Characteristic Curve and Permeability Perdiction on Childs & CollisGeroge Model of Unsaturated Loess[J].Rock and Soil Mechanics,2013,34(S2):184189.
[19]FREDLUND D G,RAHARDJO H.Soil Mechanics for Unsaturated Soils[M].New York:John Wiley and Sons,1993.
[20]LIU S H,SUN D A,WANG Y S.Numerical Study of Soil Collapse Behavior by Discrete Element Modelling[J].Computers and Geotechnics,2003,30(5):399408.
[21]GESSINGER G H.A Modified Model for the Sintering of Tungsten with Nickel Additions[J].Journal of the Less Common Metals,1972,27(2):129141.
[22]HEADY R B,CAHN J W.An Analysis of the Capillary Forces in Liquidphase Sintering of Spherical Particles[J].Metallurgical Transactions,1970,1(1):185189.
[23]KEMPER W D,ROSENAU R C.Soil Cohesion as Affected by Time and Water Content[J].Soil Science Society of America Journal,1984,48(5):10011006.
[24]栾茂田,李顺群,杨庆.对“非饱和土的基质吸力和张力吸力”讨论的答复[J].岩土工程学报,2007,29(7):11131114.
LUAN Maotian,LI Shunqun,YANG Qing.Reply for the Discussion on “Matric Suction and Tension Suction of Unsaturated Soils”[J].Chinese Journal of Geotechnical Engineering,2007,29(7):11131114.
WANG Tiehang,WANG Juanjuan,FANG Jiangfeng.Stability Analysis of Loess Tunnel Entrance Section Considering the Impact of Vertical Joints[J].Chinese Journal of Underground Space and Engineering,2012,8(1):6570.
[11]骆进,项伟,吴云刚,等.陕北黄土垂直节理形成机理的试验研究[J].长江科学院院报,2010,27(3):3841,45.
LUO Jin,XIANG Wei,WU Yungang,et al.Experimental Study on Formation of Loess Vertical Joints in Northern Shaanxi Province[J].Journal of Yangtze River Scientific Research Institute,2010,27(3):3841,45.
[12]王正贵,康国瑾,马崇武,等.关于黄土垂直节理形成机制的探讨[J].中国科学:B辑,1993,23(7):765770.
WANG Zhenggui,KANG Guojin,MA Chongwu,et al.The Discussion on Formation of Loess Vertical Joints[J].Science in China:Series B,1993,23(7):765770.
[13]冯连昌,郑晏武.中国湿陷性黄土[M].北京:中国铁道出版社,1982.
FENG Lianchang,ZHENG Yanwu.Collapse Loess in China[M].Beijing:China Railway Publishing House,1982.
[14]王永炎,林在贵.中国黄土的结构特征及物理力学性质[M].北京:科学出版社,1990.
WANG Yongyan,LIN Zaigui.The Structural Characteristics and Physics Mechanical Properties of Loess in China[M].Beijing:Science Press,1990.
[15]LU N,LIKOS W J.Unsaturated Soil Mechanics[M].New York:Wiley,2004.
[16]梅岭,姜朋明,李鹏,等.非饱和土的土水特征曲线试验研究[J].岩土工程学报,2013,35(增1):124128.
MEI Ling,JIANG Pengming,LI Peng,et al.Soilwater Characteristic Curve Tests on Unsaturated Soil[J].Chinese Journal of Geotechnical Engineering,2013,35(S1):124128.
[17]宋亚亚,卢廷浩,季李通,等.应力作用下非饱和土土水特征曲线研究[J].水利与建筑工程学报,2012,10(6):147150.
SONG Yaya,LU Tinghao,JI Litong,et al.Research on Soilwater Characteristic Curve of Unsaturated Soil Under Stress State[J].Journal of Water Resources and Architectural Engineering,2012,10(6):147150.
[18]李萍,李同录,王红,等.非饱和黄土土水特征曲线与渗透系数 Childs & CollisGeroge模型预测[J].岩土力学,2013,34(增2):184189.
LI Ping,LI Tonglu,WANG Hong,et al.Soilwater Characteristic Curve and Permeability Perdiction on Childs & CollisGeroge Model of Unsaturated Loess[J].Rock and Soil Mechanics,2013,34(S2):184189.
[19]FREDLUND D G,RAHARDJO H.Soil Mechanics for Unsaturated Soils[M].New York:John Wiley and Sons,1993.
[20]LIU S H,SUN D A,WANG Y S.Numerical Study of Soil Collapse Behavior by Discrete Element Modelling[J].Computers and Geotechnics,2003,30(5):399408.
[21]GESSINGER G H.A Modified Model for the Sintering of Tungsten with Nickel Additions[J].Journal of the Less Common Metals,1972,27(2):129141.
[22]HEADY R B,CAHN J W.An Analysis of the Capillary Forces in Liquidphase Sintering of Spherical Particles[J].Metallurgical Transactions,1970,1(1):185189.
[23]KEMPER W D,ROSENAU R C.Soil Cohesion as Affected by Time and Water Content[J].Soil Science Society of America Journal,1984,48(5):10011006.
[24]栾茂田,李顺群,杨庆.对“非饱和土的基质吸力和张力吸力”讨论的答复[J].岩土工程学报,2007,29(7):11131114.
LUAN Maotian,LI Shunqun,YANG Qing.Reply for the Discussion on “Matric Suction and Tension Suction of Unsaturated Soils”[J].Chinese Journal of Geotechnical Engineering,2007,29(7):11131114.