阳极功能层厚度对中温固体氧化物燃料电池电性能的影响

    石纪军+程亮+罗凌虹+吴也凡+易罗财

    摘 ?要:采用水系流延成型工艺,研究了阳极支撑型中温SOFC阳极功能层厚度对中温SOFC电性能的影响,运用电化学工作站对单电池的电性能进行了表征。结果表明,在相同的运行温度下,单电池的功率密度随着功能层厚度的增加而减小,而极化阻抗则相应增加;单电池的功率密度随着运行温度的提高而增大,对应的极化阻抗则减小。以H2+3%水蒸气为燃料气,空气为氧化气,在750 ℃运行条件下,功能层厚度为25 μm、30 μm和35 μm的单电池的功率密度分别为0.31 W/cm2、0.10 W/cm2和0.07 W/cm2,相应的极化阻抗则分别为1.05 Ωcm2、2.41 Ωcm2和3.08 Ωcm2;阳极功能层厚度为25 μm的单电池的测试温度在700 ℃、750 ℃和800 ℃,其功率密度分别为0.22 W/cm2、0.31 ?W/cm2和0.45 W/cm2,对应极化阻抗分别为1.90 Ωcm2、1.05 Ωcm2和0.67 Ω/cm2。

    关键词:固体氧化物燃料电池;功能层;电性能

    1 ? 前言

    固体氧化物燃料电池(Solid Oxide Fuel Cell,简称SOFC)是采用固体氧化物作为电解质隔膜,通过化学反应将燃料的化学能直接转换为电能的一种发电装置,与其它方式的燃料利用相比具有能量转换效率高,使用寿命长,可用燃料广泛,易实现热电联供,对环境的污染小等诸多优点[1-5]。固体氧化物燃料电池以其诸多优点将成为21世纪最受欢迎的电能获取装置之一[6]。有关学者认为SOFC的电化学反应场所主要集中于电解质和阳极的界面,其他部分只起到传输气体和集流体的作用[7-8]。那么,如果在电解质与阳极的界面处引入一层微观结构精细的阳极功能层,尽可能的提高阳极的三相反应界面数量和长度,这样就有可能提高单电池的电性能。为了达到既能在高温下有较强的热稳定性能又能够获得较高的电性能的目的,本文着力于阳极结构,借鉴多层阳极的原 理制备双层(支撑层和功能层)阳极单电池,从功能层厚度着手,研究不同阳极功能层厚度对中温固体氧化物燃料电池性能的影响及不同温度下固体氧化物燃料电池电性能的差异。了解其电性能与功能层厚度之间存在的一般规律。

    2 ? 实验内容

    2.1 ? 阳极浆料的制备

    支撑层和功能层均是以YSZ﹕NiO按一定质量比混合。以功能层浆料制备为例,首先将称量好的粉体倒入球磨罐,同时倒入酒精混合球磨24 h。球磨后倒出浆料,入烘箱干燥排除酒精,再倒入相应孔径的筛中捣碎假团粒得到所需粒径的粉体(支撑层粉体粒径大于功能层粒径)。最后加入分散剂、塑化剂、造孔剂、溶剂等进行混合、搅拌、除泡后得到浆料,随后将浆料进行流延成型。

    2.2 ? 阳极支撑型半电池的制备

    将流延成型得到的含功能层的电解质层和支撑层从膜带上撕下,并将其分割成与模具大小相当的小圆片,以支撑层:电解质层片数=7:1将其放入模具中进行压制。压力为10 MPa,保压2~3 min。使用SX2箱式电炉,升温速率设为100 ℃/h,烧成温度为1400 ℃,保温时间为4 h,常压氧化气氛烧结,自然冷却。

    2.3 ?单电池的制备

    用涂覆法将制备好的LSM和YSZ复合阴极浆料涂覆于制备好的半电池电解质一侧,前后涂三次,每次涂完放入烘箱中烘干,烘箱温度设置为120 ℃,烘3~4 min。阴极涂覆完毕后即为单电池素坯,将单电池素坯放入SX2箱式电炉中烧制,升温速率设为100 ℃/h,烧成温度为1200 ℃,保温时间为4 h,常压氧化气氛烧结,自然冷却。

    2.4 ?测试方法

    采用上海辰华电化学工作站CH1604C对单电池进行测试,将不同厚度的单电池分别在700 ℃、750 ℃、800 ℃三个温度点下测试其I-V-P性能和交流阻抗性能。

    3 ? 结果分析与讨论

    3.1 ?功能层厚度对单电池电性能的影响

    3.1.1 I-V-P曲线

    利用双层水系流延技术,通过控制流延刀口高度,制备不同厚度的阳极功能层,取其中阳极功能层厚度分别为25 μm、30 μm和35 μm的单电池以H2+3%水蒸气为燃料气,空气为氧化气,在不同的温度下测试其电性能,得电性能分析如图1所示。

    从图1(a)中可知,700 ℃运行温度下,单电池以H2+3%水蒸气为燃料气,空气为氧化气,单电池的功率密度随功能层厚度的增加而减小,功能层厚度为25 μm、30 μm和35 μm的单电池的功率密度分别为0.22 W/cm2、0.08 W/cm2和0.05 W/cm2。由图1(b)和图1(c)可知,单电池在750 ℃和800 ℃运行温度下的电性能与700 ℃具有相同的变化趋势,750 ℃运行时单电池功率密度分别为0.31 W/cm2、0.10 W/cm2和0.07 W/cm2;800 ℃运行时单电池功率密度分别为0.45 W/cm2、0.16 W/cm2和0.13 W/cm2。且看出功能层厚度由25 μm增至30 μm的过程中单电池电性能急剧降低,而功能层厚度由30 μm增至35 μm的过程中单电池功率密度降低趋势变缓。

    3.1.2交流阻抗曲线

    将不同功能层厚度的单电池在不同的温度下测试其阻抗谱,其结果分析如图2所示。

    从图2(a)可知,单电池在700 ℃下的极化阻抗随着阳极功能层厚度的增加而逐渐增加,功能层厚度为25 μm、30 μm和35 μm的单电池的极化阻抗分别为1.90 Ωcm2、4.20 Ωcm2和5.81 Ωcm2;从图2(b)和图2(c)可知,单电池在750 ℃和800 ℃具有同样的趋势,功能层厚度为25 μm、30 μm和35 μm的单电池在750 ℃的极化阻抗分别为1.05 Ωcm2、2.41 Ωcm2和3.08 Ωcm2;而相应的单电池在800 ℃的极化阻抗分别为0.67 Ωcm2、1.35 Ωcm2和1.80 Ωcm2。

    阳极功能层为电解质/阳极界面提供丰富的三相反应界面,合适厚度的阳极功能层能够促进单电池中的电子和离子的传导速率,但是如果阳极功能层过厚,反而会增加传导时间导致电性能降低。低孔隙率的阳极功能层对燃料气的扩散和输运以及反应产物的排出都具有一定的阻碍作用,如果阳极功能层越厚,这种阻碍作用就越明显,最后导致阳极浓差极化的产生以及有效的电化学反应区域在一定程度上的减少。有研究表明[9-12],阳极功能层存在一个有效的厚度,在这个有效的厚度范围内,阳极功能层能够增大电化学反应区域的三相界面长度和数量,加速电子和离子的传导速率,有利于电性能的提高。但是功能层超过这个有效厚度,阳极功能层的优势就体现不出来,此时的阳极功能层就成了集流体。当然阳极功能层的有效厚度与阳极的孔隙率和离子电导率具有很大的关系,有效厚度随着阳极离子电导率或孔隙率的增加而增大。

    3.2 ?运行温度对单电池电性能的影响

    3.2.1 I-V-P曲线

    选取阳极功能层厚度为25 μm的单电池作为研究对象,在700 ℃、750 ℃和800 ℃三个温度点下的测量获得I-V-P曲线如图3所示。

    由图3可知,阳极功能层厚度为25 μm,单电池以H2+3%水蒸气为燃料气,空气为氧化气,单电池的测试温度在700 ℃、750 ℃和800 ℃,其功率密度分别为0.22 W/cm2、0.31 W/cm2和0.45 W/cm2。因此,可得出单电池的功率密度随着运行温度的升高而逐渐上升。随着运行温度的提高,单电池的催化活性提高,从而提高了单电池的电性能。

    3.2.2交流阻抗曲线

    在相同功能层厚度(25 μm),不同运行温度(700 ℃、750 ℃、800 ℃)下,单电池的阻抗谱图如图4所示。

    从图4中可以看出,随着运行温度的上升,单电池的极化阻抗逐渐减小,在700 ℃、750 ℃,800 ℃的极化阻抗分别为1.90 Ωcm2、1.05 Ωcm2和0.67 Ω/cm2。说明随着运行温度的提高,燃料气和氧化气分别在两极的扩散传输也大大的提高,单电池阴极和阳极的催化活性也相应的增大,因此,降低了单电池的极化阻抗。

    4 ? 结论

    采用水系流延技术制备平板式单电池,分别研究了阳极功能层厚度、单电池运行温度对单电池的电性能的影响。以H2+3%水蒸气为燃料气,空气为氧化气在工作运行温度下测试单电池的电性能。在相同的运行温度下,单电池的功率密度随着功能层厚度的增加而减小,而极化阻抗则相应增加;单电池的功率密度随着运行温度的提高而增大,对应极化阻抗则减小。在750 ℃运行条件下,功能层厚度为25 μm、30 μm和35 μm的单电池的功率密度分别为0.31 W/cm2、0.10 W/cm2和0.07 W/cm2,相应的极化阻抗则分别为1.05 Ωcm2、2.41 Ωcm2和3.08 Ωcm2;阳极功能层厚度为25 μm的单电池的测试温度在700 ℃、750 ℃和800 ℃,其功率密度分别为0.22 W/cm2、0.31 W/cm2和0.45 W/cm2,对应的极化阻抗分别为1.90 Ωcm2、1.05 Ωcm2和0.67 Ω/cm2。阳极功能层存在一个有效的厚度,在这个有效的厚度范围内,阳极功能层能够增大电化学反应区域的三相界面长度和数量,加速电子和离子的传导速率,有利于电性能的提高。但是功能层超过这个有效厚度,阳极功能层的优势就体现不出来,此时的阳极功能层就成为了集流体。

    参考文献

    [l] 衣宝廉. 燃料电池的原理, 技术状态与展望[J]. 电池工业, 2003,

    8(1): 16-22.

    [2] 黄镇江. 燃料电池及其应用[M]. 北京: 电子工业出版社, 2005.

    [3] Tae Wook Eom, Hae Kwang Yang, Kyung Hwan (下转第32页) ? ?Kim, et al. Effect ? ?of interlayer on structure and performance of

    anode-supportedSOFC single cells[J].Ultramicroscopy,2008, 108

    (10): 1283-1287.

    [4] Somnath Biswas, Thangamani Nithyanantham, Saraswathi

    Nambiappan Thangavel, et al. High-temperature mechanical

    properties of reduced NiO–8YSZ anode-supported bi-layer

    SOFC structures in ambient air and reducing environments[J].

    Ceramics International,2013,39(3): 3103-3111.

    [5] Madhumita Mukhopadhyay, Jayanta Mukhopadhyay, Abhijit Das

    Sharma, et al. In-situ patterned intra-anode triple phase

    boundary in SOFC electroless anode: An enhancement of

    electrochemical performance[J].International Journal of Hydrogen

    Energy,2011,36(13): 7677-7682

    [6] J.Scott Cronin, James R.Wilson, Scott A. Barnett. Impact of pore

    microstructure evolution on polarization resistance of Ni-Yttria-

    stabilized zirconia fuel cell anodes [J]. Journal of Power Sources,

    2011 , 196: 2640–2643.

    [7] K.M. Dunst , J. Karczewski, T. Miruszewski, et al. Investigation of

    functional layers of solid oxide fuel cell anodes for synthetic

    biogas reforming[J]. Solid State Ionics, 2013, 251: 70-77.

    [8] R. Mücke, O. Büchler, M. Bram, et al. Preparation of functional

    layers for anode-supported solid oxide fuel cells by the reverse

    roll coating process[J]. Journal of Power Sources, 2011, 196:

    9528-9535.

    [9] M. Zarabian, A. Yazdan Yar, S. Vafaeenezhad, et al. elec

    trophoretic deposition of functionally –graded NiO-YSZ compos

    ite films[J]. J Europ ceram soc, 2013, 33(10): 1815-1823.

    [10] 路飞平, 李建丰, 孙硕. 功能层厚度对叠层有机电致发光器件

    出光性能影响的数值研究[J].物理学报, 2013, 62(24): 247201-

    1- 247201-8.

    [11] 陈孔发, 吕喆, 陈相君, 等. 阳极功能层对燃料电池性能的影

    响[J]. 电源技术, 2009, 33(1): 21-23.

    [12] Yong-Tae An, Byung-Hyun Choi, Mi-Jung Ji, et al. New fabri

    cation technique for a Ni–YSZ composite anode from a core–

    shell structured particle[J]. Solid State Ionics,2012, 207(18): 64-68.

    Influence of Thickness of Anode Functional Layer on Electrical Performance for Intermediate Temperature Solid Oxide Fuel Cell

    SHI Ji-jun, CHENG Liang, LUO Ling-hong, WU Ye-fan, YI Luo-cai

    (Jingdezhen Ceramic Institute, Jingdezhen ? 333001)

    Abstract: The effect of anode functional layer on its electrical performance for anode supported intermediate temperature solid oxide fuel cell was investigated by aqueous tape casting. Electrical performance of single cell was characterized by electrical chemistry working station. The results show that, the power density of single cell decreased with the increasing of functional layer thickness at the same working temperature, they increased with the increasing of working temperature, but polarization resistance was opposite trend. Power density of single cell with functional layer thickness of 25 μm, 30 μm and 35 μm were 0.31 W/cm2, 0.10 W/cm2 and 0.07 W/cm2 using H2+3%H2O as fuel, air as oxidation gas at 750 ℃, respectively, while polarization resistance were 1.05Ωcm2, 2.41Ωcm2 and 3.08Ωcm2. The power density of single cell with functional layer thickness of 25 μm were 0.22W/cm2, 0.31 W/cm2 and 0.45W/cm2 at 700 ℃、750℃and 800 ℃, but polarization resistance were 1.90 Ωcm2、1.05 Ωcm2 and 0.67 Ωcm2, respectively.

    Key words: SOFC; functional layer; electrical performance

    [6] J.Scott Cronin, James R.Wilson, Scott A. Barnett. Impact of pore

    microstructure evolution on polarization resistance of Ni-Yttria-

    stabilized zirconia fuel cell anodes [J]. Journal of Power Sources,

    2011 , 196: 2640–2643.

    [7] K.M. Dunst , J. Karczewski, T. Miruszewski, et al. Investigation of

    functional layers of solid oxide fuel cell anodes for synthetic

    biogas reforming[J]. Solid State Ionics, 2013, 251: 70-77.

    [8] R. Mücke, O. Büchler, M. Bram, et al. Preparation of functional

    layers for anode-supported solid oxide fuel cells by the reverse

    roll coating process[J]. Journal of Power Sources, 2011, 196:

    9528-9535.

    [9] M. Zarabian, A. Yazdan Yar, S. Vafaeenezhad, et al. elec

    trophoretic deposition of functionally –graded NiO-YSZ compos

    ite films[J]. J Europ ceram soc, 2013, 33(10): 1815-1823.

    [10] 路飞平, 李建丰, 孙硕. 功能层厚度对叠层有机电致发光器件

    出光性能影响的数值研究[J].物理学报, 2013, 62(24): 247201-

    1- 247201-8.

    [11] 陈孔发, 吕喆, 陈相君, 等. 阳极功能层对燃料电池性能的影

    响[J]. 电源技术, 2009, 33(1): 21-23.

    [12] Yong-Tae An, Byung-Hyun Choi, Mi-Jung Ji, et al. New fabri

    cation technique for a Ni–YSZ composite anode from a core–

    shell structured particle[J]. Solid State Ionics,2012, 207(18): 64-68.

    Influence of Thickness of Anode Functional Layer on Electrical Performance for Intermediate Temperature Solid Oxide Fuel Cell

    SHI Ji-jun, CHENG Liang, LUO Ling-hong, WU Ye-fan, YI Luo-cai

    (Jingdezhen Ceramic Institute, Jingdezhen ? 333001)

    Abstract: The effect of anode functional layer on its electrical performance for anode supported intermediate temperature solid oxide fuel cell was investigated by aqueous tape casting. Electrical performance of single cell was characterized by electrical chemistry working station. The results show that, the power density of single cell decreased with the increasing of functional layer thickness at the same working temperature, they increased with the increasing of working temperature, but polarization resistance was opposite trend. Power density of single cell with functional layer thickness of 25 μm, 30 μm and 35 μm were 0.31 W/cm2, 0.10 W/cm2 and 0.07 W/cm2 using H2+3%H2O as fuel, air as oxidation gas at 750 ℃, respectively, while polarization resistance were 1.05Ωcm2, 2.41Ωcm2 and 3.08Ωcm2. The power density of single cell with functional layer thickness of 25 μm were 0.22W/cm2, 0.31 W/cm2 and 0.45W/cm2 at 700 ℃、750℃and 800 ℃, but polarization resistance were 1.90 Ωcm2、1.05 Ωcm2 and 0.67 Ωcm2, respectively.

    Key words: SOFC; functional layer; electrical performance

    [6] J.Scott Cronin, James R.Wilson, Scott A. Barnett. Impact of pore

    microstructure evolution on polarization resistance of Ni-Yttria-

    stabilized zirconia fuel cell anodes [J]. Journal of Power Sources,

    2011 , 196: 2640–2643.

    [7] K.M. Dunst , J. Karczewski, T. Miruszewski, et al. Investigation of

    functional layers of solid oxide fuel cell anodes for synthetic

    biogas reforming[J]. Solid State Ionics, 2013, 251: 70-77.

    [8] R. Mücke, O. Büchler, M. Bram, et al. Preparation of functional

    layers for anode-supported solid oxide fuel cells by the reverse

    roll coating process[J]. Journal of Power Sources, 2011, 196:

    9528-9535.

    [9] M. Zarabian, A. Yazdan Yar, S. Vafaeenezhad, et al. elec

    trophoretic deposition of functionally –graded NiO-YSZ compos

    ite films[J]. J Europ ceram soc, 2013, 33(10): 1815-1823.

    [10] 路飞平, 李建丰, 孙硕. 功能层厚度对叠层有机电致发光器件

    出光性能影响的数值研究[J].物理学报, 2013, 62(24): 247201-

    1- 247201-8.

    [11] 陈孔发, 吕喆, 陈相君, 等. 阳极功能层对燃料电池性能的影

    响[J]. 电源技术, 2009, 33(1): 21-23.

    [12] Yong-Tae An, Byung-Hyun Choi, Mi-Jung Ji, et al. New fabri

    cation technique for a Ni–YSZ composite anode from a core–

    shell structured particle[J]. Solid State Ionics,2012, 207(18): 64-68.

    Influence of Thickness of Anode Functional Layer on Electrical Performance for Intermediate Temperature Solid Oxide Fuel Cell

    SHI Ji-jun, CHENG Liang, LUO Ling-hong, WU Ye-fan, YI Luo-cai

    (Jingdezhen Ceramic Institute, Jingdezhen ? 333001)

    Abstract: The effect of anode functional layer on its electrical performance for anode supported intermediate temperature solid oxide fuel cell was investigated by aqueous tape casting. Electrical performance of single cell was characterized by electrical chemistry working station. The results show that, the power density of single cell decreased with the increasing of functional layer thickness at the same working temperature, they increased with the increasing of working temperature, but polarization resistance was opposite trend. Power density of single cell with functional layer thickness of 25 μm, 30 μm and 35 μm were 0.31 W/cm2, 0.10 W/cm2 and 0.07 W/cm2 using H2+3%H2O as fuel, air as oxidation gas at 750 ℃, respectively, while polarization resistance were 1.05Ωcm2, 2.41Ωcm2 and 3.08Ωcm2. The power density of single cell with functional layer thickness of 25 μm were 0.22W/cm2, 0.31 W/cm2 and 0.45W/cm2 at 700 ℃、750℃and 800 ℃, but polarization resistance were 1.90 Ωcm2、1.05 Ωcm2 and 0.67 Ωcm2, respectively.

    Key words: SOFC; functional layer; electrical performance