安石榴苷对烟曲霉菌诱导小鼠巨噬细胞炎症反应影响
林浩 王谦 赵桂秋
[摘要] 目的 探討安石榴苷(PUN)对烟曲霉菌菌丝诱导的小鼠腹腔巨噬细胞炎性因子及活性氧(ROS)释放的影响,评价PUN的抗炎作用。
方法 提取8周龄C57BL/6雌鼠腹腔巨噬细胞,经不同浓度PUN预处理2 h后加入灭活烟曲霉菌菌丝。采用实时荧光定量PCR(RT-PCR)检测炎症因子及模式识别受体mRNA的表达,蛋白印迹法(Western blotting)检测白细胞介素1β(IL-1β)、白细胞介素6(IL-6)和肿瘤坏死因子α(TNF-α)蛋白的表达,DCFA-DA荧光探针检测不同时间点细胞内ROS水平。
结果 25、50、100 mg/L的PUN预处理2 h,可以显著降低烟曲霉菌菌丝刺激诱导的巨噬细胞IL-1β、IL-6、白细胞介素10(IL-10)、TNF-α、巨噬细胞炎性蛋白2(MIP2)、趋化因子1(CXCL1)mRNA表达(F=339.4~2 420.0,P<0.01)和IL-1β、IL-6、TNF-α蛋白表达(F=71.7~501.3,P<0.01)。小鼠腹腔巨噬细胞经不同浓度PUN预处理2 h再加入烟曲霉菌菌丝1、2、4、8、12、24 h时,细胞ROS含量均较对照组降低,差异具有统计学意义(F=439.5~739.8,P<0.01)。此外,PUN可以显著抑制烟曲霉菌菌丝诱导的巨噬细胞诱导型一氧化氮合酶(iNOS)和Toll样受体4(TLR4)mRNA表达(F=683.1、271.2,P<0.01)。
结论 PUN可能通过对模式识别受体TLR4的抑制,抑制真菌菌丝诱导的巨噬细胞炎性因子的生成,下调细胞内氧化应激水平。
[关键词] 安石榴苷;巨噬细胞;烟曲霉菌;炎症;氧化性应激;小鼠
[中图分类号] R285.5;R364.5
[文献标志码] A
[文章编号] 2096-5532(2021)03-0402-05
doi:10.11712/jms.2096-5532.2021.57.029
[开放科学(资源服务)标识码(OSID)]
[网络出版] https://kns.cnki.net/kcms/detail/37.1517.R.20200824.0958.001.html;2020-08-25 09:28:46
EFFECT OF PUNICALAGIN ON THE INFLAMMATORY RESPONSE OF MURINE MACROPHAGES INDUCED BY ASPERGILLUS FUMIGATUS
LIN Hao, WANG Qian, ZHAO Guiqiu
(Department of Ophthalmology, The Affiliated Hospital of Qing-
dao University, Qingdao 266071, China)
[ABSTRACT]Objective To investigate the anti-inflammatory effect of punicalagin (PUN) by evaluating its regulation of inflammatory cytokines and reactive oxygen species (ROS) in Aspergillus fumigatus-induced macrophages collected from the abdominal cavity of mice.
Methods The macrophages were collected from the abdominal cavity of female C57BL/6 rats aged 8 weeks and the inactivated hyphae of Aspergillus fumigatus were added after pretreatment with different concentrations of PUN for 2 h. RT-PCR was used to measure the mRNA expression of inflammatory cytokines and inflammatory cytokines; Western blotting was used to measure the protein expression of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α); DCFA-DA fluorescent probe was used to measure the level of ROS in cells at different time points.
Results The 2 h pretreatment with PUN (25, 50, and 100 mg/L) significantly reduced the mRNA expression of IL-1β, IL-6, IL-10, TNF-α, MIP2, and the chemokine CXCL1 (F=339.4-2420.0,P<0.01) and protein expression of IL-1β, IL-6, and TNF-α (F=71.7-501.3,P<0.01) in macrophages stimulated by the hyphae of Aspergillus fumigatus. Compared with the control group, the murine macrophages had a significantly lower ROS level at 1, 2, 4, 8, 12, and 24 h of treatment with the hyphae of Aspergillus fumigatus after the 2 h pretreatment with different concentrations of PUN (F=439.5-739.8,P<0.01). In addition, PUN significantly inhibited the mRNA expression of inducible nitric oxide synthase and Toll-like receptor 4 (TLR4) in the macrophages induced by the hyphae of Aspergillus fumigatus (F=683.1,271.2;P<0.01).
Conclusion PUN can inhibit the production of inflammatory cytokines and downregulate the level of oxidative stress in macrophages induced by the hyphae of Aspergillus fumigatus, possibly by inhibiting the pattern recognition receptor TLR4.
[KEY WORDS]punicalagin; macrophages; Aspergillus fumigatus; inflammation; oxidative stress; mice
烟曲霉菌是自然界中常见的致病微生物[1]。当人体外部屏障被破坏或免疫功能低下时烟曲霉菌极易致病[2]。烟曲霉菌导致的炎症在充分抗真菌药物治疗后仍难以控制,原因在于其致病机制除了真菌侵袭对正常组织造成破坏之外[3],烟曲霉菌本身具备的抗原性也增加了组织的炎症程度[4-5]。安石榴苷(PUN)是从石榴皮中提取的鞣花酸类物质,因其强大的抗炎作用被广泛应用于中医药及化妆品中[6]。既往研究结果表明,PUN在抗炎、抗氧化、抗癌、抗真菌、抗细菌等方面均发挥重要作用[7-11]。巨噬细胞是PUN发挥抗炎作用的靶点[6]。已有研究证实,PUN能够通过PI3K/Akt/Nrf2/HO-1通路减少活性氧(ROS)和一氧化氮的产生,增加超氧化物歧化酶1(SOD1) mRNA的表达,从而抑制脂多糖诱导的巨噬细胞的氧化应激[7]。另有研究表明,PUN能够通过核因子κB(NF-κB)信号通路抑制肿瘤坏死因子α(TNF-α)和白细胞介素6(IL-6)基因表达,降低小胶质细胞的炎症反应[12]。本研究旨在探讨PUN对烟曲霉菌诱导炎症的作用及其可能机制,以期为临床治疗烟曲霉菌感染所致的炎症性疾病提供新思路。现将结果报告如下。
1 材料与方法
1.1 实验动物
健康SPF级C57BL/6雌鼠(8周龄),由江苏省动物实验中心提供,经检验检疫均合格,全身情况良好。实验动物使用符合美国眼科和视觉研究协会(ARVO)关于动物使用的标准。
1.2 小鼠腹腔巨噬细胞的提取
小鼠腹腔注射体积分数0.03的硫代乙醇培养液1 mL,8 d后于无菌环境下收集腹腔积液细胞。向小鼠腹腔注射10 mL高糖DMEM(Hyclone,美国),充分按摩后吸出,4 ℃下以12 000 r/min离心10 min,用含体积分数0.10 FBS(Hyclone,美国)的DMEM重悬细胞,转移至孔板。2 h后光镜下观察到细胞贴壁后更换培养液,进行预处理。
1.3 药物细胞毒性测定
巨噬细胞在96孔板中贴壁后更换含有不同浓度PUN(Sigma,美国)的细胞培养液(体积分数0.10FBS+DMEM)100 μL,分别于24和48 h时加入CCK-8(MCE,美国)10 μL,37 ℃ 孵育2 h后,用分光光度计(Eppendorf,德国)测量每孔450 nm波长处光密度值。
1.4 灭活烟曲霉菌菌丝的制备
烟曲霉菌购自中国普通微生物培养物保藏中心。收集烟曲霉菌的孢子及菌丝,加入体积分数0.75的乙醇,混匀后置4 ℃冰箱过夜灭活菌丝。次日离心菌液,以无菌PBS(Solarbio,中国北京)洗涤3次,离心去上清液,加入DMEM混匀,细胞计数板计数后调整菌丝终浓度为1×108/CFU。
1.5 实时荧光定量PCR(RT-PCR)方法检测各指标mRNA表达
用12孔板培养巨噬细胞,将细胞分为正常组(normal组,A组)、加菌对照组(A.F.组,B组)、加菌加不同浓度PUN组(A.F.+25 mg/L PUN组、A.F.+50 mg/L PUN组、A.F.+100 mg/L PUN组,C、D、E组)。灭活烟曲霉菌菌丝刺激8 h后,每孔加入500 μL RNAisoPlus(大连宝生物工程有限公司),冰上裂解30 min后用细胞刮收集样本至EP管,提取总RNA,按照Prime Script RTreagent Kit With gDNA Eraser(大連宝生物工程有限公司)试剂逆转录步骤,建立2 μg逆转录反应体系。使用β-actin为内参照,应用RT-PCR仪(Eppendorf公司,德国)进行PCR扩增反应,分别检测炎症因子白细胞介素1β(IL-1β)、IL-6、白细胞介素10(IL-10)、TNF-α、巨噬细胞炎性蛋白2(MIP2)、趋化因子1(CXCL1)mRNA表达以及诱导型一氧化氮合酶(iNOS)和Toll样受体4(TLR4)mRNA表达。引物序列于GenBank中查找,由TaKaRa宝生物工程有限公司负责引物的设计及合成。PCR引物序列见表1。实验重复3次。
1.6 蛋白印迹法(Western blotting)检测IL-1β、IL-6和TNF-α蛋白表达
灭活烟曲霉菌菌丝刺激16 h后,于6孔板中每孔加入100 μL蛋白裂解液(RIPA∶PMSF= 100∶1),用细胞刮收集细胞蛋白于1.5 mL EP管中,置冰上裂解2 h,4 ℃下以12 000 r/min离心5 min,取上清液,用BCA蛋白浓度测定试剂盒(Solarbio,中国北京)测定蛋白浓度并计算上样量。蛋白煮沸变性,行凝胶电泳,转膜,封闭液(Solarbio,中国北京)封闭2 h。加一抗IL-1β(1∶500,美国RD)、IL-6(1∶500,中国Bioss)、TNF-α(1∶400,美国Cell Signaling Technology)、β-actin(1∶1 000,中国武汉Elabscience)、β-tubulin(1∶1 000,中国武汉Elabscience),4 ℃孵育过夜。以PBST摇洗3次,每次10 min,加二抗(1∶1 000,中国武汉Elabscience)室温孵育2 h。以PBST摇洗3次,每次10 min。用ECL(Byotime,中国北京)显色,UVP凝胶成像系统(VILBER LOURM,美国)显像,采用Image J软件分析蛋白条带。实验重复5次。
1.7 DCFH-DA检测细胞内ROS含量
巨噬细胞在96孔板中贴壁后更换培养液预处理2 h,加入灭活烟曲霉菌菌丝。在相应时间点加入DCFH-DA探针(1∶1 000,美国MCE)37 ℃孵育20 min,PBS洗涤3次后使用荧光分光光度计,以488 nm激发波长、525 nm发射波长,实时检测荧光强度。实验重复3次。
1.8 统计学分析
应用Graph Pad 7.0 软件进行统计分析,计量资料数据以±s形式表示,组间比较用One-way ANOVA检验,以P<0.05为差异有统计学意义。
2 结? 果
2.1 PUN对小鼠腹腔巨噬细胞的细胞毒性
巨噬细胞贴壁后分别加入含有0、25、50、100、200 mg/L PUN的细胞培养液培养,在培养24、48 h时,各浓度组光密度值比较差异均无统计学意义(P>0.05),提示25~200 mg/L PUN在48 h内对小鼠腹腔巨噬细胞无细胞毒性。见表2。
2.2 PUN对腹腔巨噬细胞炎症因子mRNA表达的影响
灭活烟曲霉菌菌丝刺激8 h后,B组细胞炎症因子IL-1β、IL-6、IL-10、TNF-α、MIP2及CXCL1 mRNA的表达水平较A组显著升高,PUN可浓度依赖性降低上述炎症因子mRNA的表达水平,差异均有统计学意义(F=339.4~2 420.0,P<0.01)。见表3。
2.3 PUN对巨噬细胞炎症因子蛋白表达的影响
灭活烟曲霉菌菌丝刺激16 h后,B组细胞炎症因子IL-1β、IL-6及TNF-α蛋白表达水平较A组显著升高,PUN可浓度依赖性降低上述炎症因子蛋白表达水平,差异均有统计学意义(F=71.7~501.3,P<0.01)。见表4。
2.4 PUN对巨噬细胞氧化应激水平的影响
巨噬细胞于96孔板中贴壁后,使用PUN预处理,加入灭活烟曲霉菌菌丝刺激,分别于加菌后1、2、4、8、16、24 h应用DCFH-DA探针检测细胞内ROS水平。与加菌刺激前相比较,加菌后细胞内ROS水平升高,于8 h时达峰,随后降低。不同浓度PUN组间比较,各时间点的细胞ROS水平差异均有统计学意义(F=439.5~739.8,P<0.01)。见图1。灭活烟曲霉菌菌丝刺激8 h后,RT-PCR检测结果显示,随PUN浓度升高,iNOS mRNA表达水平呈浓度依赖性降低,各组间差异均具有统计学意义(F=683.1,P<0.01)。见表5。
2.5 PUN对TLR4表达的影响
灭活烟曲霉菌菌丝刺激8 h后,B组细胞TLR4 mRNA表达水平较A组显著升高,PUN可浓度依赖性降低TLR4 mRNA的表达水平,差异均有统计学意义(F=3 271.2,P<0.01)。见表5。
3 讨? 论
PUN提取自石榴皮,是一种水溶性鞣花酸类物质,具有抗菌、抗炎、抗氧化、抗癌等多种作用。特别是其抗炎药理作用,已在人体外肠道模型、猪离体皮肤等多种组织中被证实[13-15]。已有研究表明,巨噬细胞是PUN在炎症中作用的靶点,其在真菌性炎症疾病的病程中发挥重要作用[16]。巨噬细胞能够识别和内化来自组织微环境的凋亡细胞和外来病原体,并且启动炎症和其他免疫细胞的活化[17],巨噬细胞产生的炎症因子介导的直接损伤和免疫细胞的趋化募集是组织发生过度炎症反应的重要原因。有研究显示,PUN可以下调脂多糖刺激后RAW264.7细胞系炎症因子的表达[18-20],但PUN对真菌刺激后巨噬细胞炎症反应的影响尚未见研究报道。本实验对此进行了探讨。
本文RT-PCR及Western blotting检测结果显示,经PUN预处理及真菌刺激后,随PUN浓度升高,巨噬细胞IL-1β等炎症因子以及模式识别受体TLR4的表达水平呈浓度依赖性降低。且ROS检测结果表明,高浓度的PUN可以抑制灭活烟曲霉菌菌丝刺激后小鼠腹腔巨噬细胞的ROS水平。
大量研究結果表明,NF-κB是真菌性角膜炎炎症反应中重要的调节因子,它可以调节IL-1β等炎症因子,通过这些细胞因子趋化炎症细胞向病变部位浸润[21]。KIM等[22]的研究表明,PUN可直接与神经组织炎症中的NF-κB亚基p50结合,下调其活性,进而影响NF-κB下游炎症因子的产生。炎症因子能够直接导致组织损伤,扩大下游炎症反应,并募集其他炎症细胞,加重真菌性角膜炎的严重程度。XU等[7]的研究证实,PUN可以上调Nrf2介导的通路并增强血加氧酶-1表达,导致ROS产生减少和一氧化氮产生过量。此外,PUN也能够降低人表皮角质形成细胞、泡沫细胞、NIH3T3细胞等的氧化应激水平[23-25]。本实验结果与以往研究结果一致,提示PUN可对巨噬细胞中炎症因子和ROS的表达产生影响。
综上所述,PUN能够减轻烟曲霉菌诱导的小鼠腹腔巨噬细胞的炎症反应,降低巨噬细胞氧化应激水平,并且PUN预处理能够降低细胞模式识别受体的表达,提示PUN可能通过下调TLR4表达对巨噬细胞产生抗炎作用。但PUN抗炎作用的具体机制还有待于进一步研究。
[参考文献]
[1]DE LUCA A, IANNITTI R G, BOZZA S, et al. CD4(+) T cell vaccination overcomes defective cross-presentation of fungal antigens in a mouse model of chronic granulomatous di-
sease[J]. J Clin Investig, 2012,122(5):1816-1831.
[2]LATGE J P. Aspergillus fumigatus and aspergillosis[J]. Clin Microbiol Rev, 1999,12(2):310-350.
[3]ORCIUOLO E, STANZANI M, CANESTRARO M, et al. Effects of Aspergillus fumigatus gliotoxin and methylprednisolone on human neutrophils: implications for the pathoge-
nesis of invasive aspergillosis[J]. Journal of Leukocyte Biology, 2007,82(4):839-848.
[4]BOCHUD P Y, CHIEN J W, MARR K A, et al. Toll-like receptor 4 polymorphisms and aspergillosis in stem-cell transplantation[J]. N Engl J Med, 2008,359(17):1766-1777.
[5]THOMAS P A. Current perspectives on ophthalmic mycoses[J]. Clin Microbiol Rev, 2003,16(4):730-797.
[6]XU X L, GUO Y H, ZHAO J X, et al. Punicalagin, a PTP1B inhibitor, induces M2c phenotype polarization via up-regulation of HO-1 in murine macrophages[J]. Free Radic Biol Med, 2017,110:408-420.
[7]XU Q, ZHAO G Q, LIN J, et al. Role of Dectin-1 in the innate immune response of rat corneal epithelial cells to Aspergillus fumigatus[J]. BMC Ophthalmol, 2015,15:126.
[8]CAO K, XU J, PU W J, et al. Punicalagin, an active compo-nent in pomegranate, ameliorates cardiac mitochondrial impairment in obese rats via AMPK activation[J]. Sci Rep, 2015,5:14014.
[9]ZOU X, YAN C H, SHI Y J, et al. Mitochondrial dysfunction in obesity-associated nonalcoholic fatty liver disease:the protective effects of pomegranate with its active component punicalagin[J]. Antioxid Redox Signal, 2014,21(11):1557-1570.
[10]KUMAGAI Y, NAKATANI S, ONODERA H, et al. Anti-glycation effects of pomegranate (Punica granatum L.) fruit extract and its components in vivo and in vitro[J]. J Agric Food Chem, 2015,63(35):7760-7764.
[11]WANG Y, CHEN B S, LONGTINE M S, et al. Punicalagin promotes autophagy to protect primary human syncytiotrophoblasts from apoptosis[J]. Reprod Camb Engl, 2016,151(2):97-104.
[12]OLAJIDE O A, KUMAR A, VELAGAPUDI R, et al. Punicalagin inhibits neuroinflammation in LPS-activated rat primary microglia[J]. Mol Nutr Food Res, 2014,58(9):1843-1851.
[13]HOLLEBEECK S, WINAND J, HRENT M F, et al. Anti-inflammatory effects of pomegranate (Punica granatum L.) husk ellagitannins in Caco-2 cells, an in vitro model of human intestine[J]. Food & Function, 2012,3(8):875-885.
[14]HOUSTON D M, BUGERT J, DENYER S P, et al. Anti-inflammatory activity of Punica granatum L. (Pomegranate) rind extracts applied topically to ex vivo skin[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2017,112:30-37.
[15]LYU A, CHEN J J, WANG H C, et al. Punicalagin protects bovine endometrial epithelial cells against lipopolysaccharide-induced inflammatory injury[J]. J Zhejiang Univ Sci B, 2017,18(6):481-491.
[16]SUN Q Q, LI C, LIN J, et al. Celastrol ameliorates Aspergillus fumigatus keratitis via inhibiting LOX-1[J]. International Immunopharmacology, 2019,70:101-109.
[17]PEISER L, GORDON S. The function of scavenger receptors expressed by macrophages and their role in the regulation of inflammation[J]. Microbes Infect, 2001,3(2):149-159.
[18]BENSAAD L A, KIM K H, QUAH C C, et al. Anti-inflammatory potential of ellagic acid, gallic acid and punicalagin A&B isolated from Punica granatum[J]. BMC Complementary Altern Med, 2017,17(1):47.
[19]XU X L, LI H Q, HOU X L, et al. Punicalagin induces Nrf2/HO-1 expression via upregulation of PI3K/AKT pathway and inhibits LPS-induced oxidative stress in RAW264.7 macrophages[J]. Mediators of Inflammation, 2015,2015:380218.
[20]XU X L, YIN P, WAN C R, et al. Punicalagin inhibits inflammation in LPS-induced RAW264.7 macrophages via the suppression of TLR4-mediated MAPKs and NF-κB activation[J]. Inflammation, 2014,37(3):956-965.
[21]徐玲娟,谢立信. 真菌性角膜炎的分子机制研究进展[J]. 中华眼视光学与视觉科学杂志, 2010,12(3):237-240.
[22]KIM Y E, HWANG C J, LEE H P, et al. Inhibitory effect of punicalagin on lipopolysaccharide-induced neuroinflammation,oxidative stress and memory impairment via inhibition of nuclear factor-kappaB[J]. Neuropharmacology, 2017,117:21-32.
[23]CHEN P S, LI J H. Chemopreventive effect of punicalagin, a novel tannin component isolated from Terminalia catappa, on H-ras-transformed NIH3T3 cells[J]. Toxicol Lett, 2006,163(1):44-53.
[24]ROSENBLAT M, VOLKOVA N, AVIRAM M. Pomegranate phytosterol (β-sitosterol) and polyphenolic antioxidant (punicalagin) addition to statin, significantly protected against macrophage foam cells formation[J]. Atherosclerosis, 2013,226(1):110-117.
[25]SEOK J K, LEE J, KIM Y, et al. Punicalagin and (-)-epigallocatechin-3-gallate rescue cell viability and attenuate inflammatory responses of human epidermal keratinocytes exposed to airborne particulate matter PM10[J]. Skin Pharmacology and Physiology, 2018,31(3):134-143.
(本文編辑 马伟平)