数形结合思想在初中数学教学中的渗透探究
摘要:在教育改革的影响下,我国教育事业不断做出调整,初中数学的教育方式也应该做出适时的调整。传统的教育方式已经不能适应新时代教育改革的要求,因此,教师应该在讲解数学知识的同时,给学生渗透一些关于数学思想的内容,让学生在掌握了一定的数学思想的同时,可以进行类比,同种类型的题目就会变得容易很多,让教师的课堂教学效率和教学质量得到很大提升,将这些数学思想应用在做题中,有助于学生领悟数学知识。
关键词:数形结合思想;初中数学;渗透探究;应用
中图分类号:G42文献标识码:A 文章编号:1003-2177(2020)16-0105-02
初中数学知识的难度较小学数学有很大提高,初中数学知识开始变得复杂和抽象,有的学生小学数学没有打好基础,导致在学习初中数学的时候会变得有些吃力。初中生的大脑发育和思维能力相比小学生来说都有很大提高,因此,初中教师在进行授课时要注重引导学生掌握数学学习方法,并养成良好的数学学习习惯,有助于学生在做题时理解运用,在做题时注意思考和总结数学做题方法,对他们数学能力的养成和数学思维的锻炼都有很大帮助。
1当前初中数学教学现状分析
当前初中数学教师在讲解题目时没有注重把数学方法交给学生,传统的教学方法让学生对于一些知识都是死记硬背,即使老师在讲解题目时利用了数形结合的思想,并没有在以后的做题中给学生培养利用数学思想来解决问题的习惯,学生对于数形结合的思想不能深刻理解,在做题中不会运用该种思想,因此学生学习数学变得吃力,没有掌握合理的数学方法和数学思想,学生一直很认真地学习数学,但成绩没有很大的提高,久而久之,就会对数学产生厌倦的态度,在不知不觉中降低了数学给人带来的严谨而又有趣的印象,不利于我国数学教育事业的发展。
2数形结合思想的概念
数形不分家,数形结合主要是指数和形在平面直角坐标系中有一一对应的关系,数形结合是最基本的数学思想之一,学生可以利用这种思想把复杂问题简单化,帮助学生打开解决数学问题的思路,发散思维,把“数”用“形”表现出来,对于一些复杂的数学问题,有效帮助学生打开解题思路,有助于数学成绩的提高[1]。
3数形结合思想在初中数学教学中的应用
3.1充分利用多媒体,帮助学生理解记忆
随着多媒体技术的快速发展,把它合理的应用在教学中,可以很好地帮助老师提高上课效率和上课质量,让教学水平得到大幅提升。“数形结合”的思想主要利用在函数中。初中是学生第一次接触函数,对于函数的定义并不理解,教师可以把一次函数的解析式y=kx+b(k≠0)先告诉学生,并且告诉他们一次函数的图像的走向根据k的变化而变化,当k大于0、b=0时,一次函数在直角坐标系从左往右递增,经过一、三象限;当k小于0、b=0时,一次函数在平面直角坐标系从左往右以此递增,经过二、四象限,教师可以利用画图软件随意列举几个k的值,或者也可以让学生说出几个k的值来,通过多媒体看一次函数的图像是否符合这个规律,或者让学生自己画图验证。比如y=-2x+3,y=2x+3当b相同时,让学生自己画图看这两个解析式有什么区别。当学生理解k的含义以后,教师可以再增加一下难度,当b不等于0时,分为b大于或者小于0的情况,让x等于0,通过图像可以看到函数的结论。由此可见,通过将现代化教学模式与初中数学知识结合在一起,有利于帮助学生直观地了解到函数图像的内容,同时,学生也可以在观看函数图像的时候总结出具体的结论,这样可以帮助学生加深理解和记忆,学生会更加深入地学习这部分内容。像这样,用多媒体技术来进行验证从而得出结论的方法,有助于学生通过图像理解记忆,不用死记硬背,让学生记忆的时间更长,如果忘记了可以通过画图方式把理论知识回忆起来。
3.2营造活跃的氛围,助力学生积极思考
现在初中的数学课堂大都沉闷,缺少了初中生这个年纪该有的活跃度和灵性,一部分的原因是因为老师只靠口述给学生讲理论知识,有的同学理解起来就会很困难,一个知识点没听懂,就导致后面的知识点都连贯不起来,慢慢地跟不上老师讲课的进度,就失去了对数学的兴趣[2]。所以对于一些有难度的数学题,教师需要在课堂上尽量充分吸引每个学生的注意力,让他们能够学有所得,这样让他们有一定的获得感后,才能培养对数学的兴趣,更好地提高数学成绩,课堂上本来就是要以学生为主体地位,单纯地依靠老师讲不能达到学生熟练掌握的程度,因此在教学的过程中,教师是起引导作用,课堂的主体还是学生,对于难度系数偏大、理解起来抽象的知识更要如此,比如处理二次函数的数学题时,学生们通常会感到困惑不理解,这时候教师可以引入数形结合的方法,能够帮助学生快速解答问题。教师可以先具体的给出几条开口方向不同的抛物线,并且让同学们根据抛物线的解析式在坐标系上画出抛物线,画完以后讓学生们进行总结,从而得出结论a大于0时,抛物线开口向上;a小于0时,抛物线开口向下,因此通过图像明显地看出二次函数的开口方向由a决定。因为二次函数的基本形式是y=ax2+bx+c(a≠0),当a=0时,y=bx+c,变成了一个一次函数,因此要想是一个二次函数首先要满足二次项前面的系数不为零,通过解析式可以看出来,当x=0时,y=c,因此得出结论,c是抛物线与y轴的交点。根据图像判断了a和c的符号以后,可以通过对称轴来判断b的符号,因为对称轴的公式为x=-b/2a,得出结论b的符号是由a、c的符号决定的二次函数与图像的交点,即求解方程ax2+bx+c=0的解,当学生做一些选择或者填空题时,可以把方程、函数进行转化,画出图像,更方便学生做题。知道abc的符号,因此可以在坐标轴上简单画出函数的大致图像,节约做题时间,为后面的题目留出更多的时间来思考,利用数形结合的思想,可以让抽象的函数知识简单化,提高教师的教学效率,有助于学生综合素质的提高。
3.3加强师生间沟通,鼓励学生发散思维
制约初中生数学成绩进步的因素有很多,其中老师和学生之间的沟通也是一个很重要的因素。教师要主动跟学生们进行交流,增进师生之间的感情,老师可以在上课给学生讲解完一种类型的题目时,给学生留出一定的时间消化理解这种方法,小组之间进行讨论,讨论过程中有遇到不明白的地方,教师看到讨论遇到瓶颈时,可以主动地帮助学生解答[3]。比如说,学习两点间的距离时,已知在平面直角坐标系中,直角三角形的三个顶点的坐标已知,A(2,2)B(6,2)C(2,5),求线段BC的长度,此题经过转化以后就变成了求两点间的距离,第一种方法可以利用两点间的距离公式来解答,因为是直角三角形,利用勾股定理BC2=AC2+AB2,从而求出线段BC的长度,第二种方法是画图,画出图以后,可以清晰地看出△ABC的两条直角边分别是3和4,线段BC的长度就很容易求出来,这两种方法最后都可以求出BC的长度,但是,相比第一种方法,第二种方法就会更直观简便,不需要进行开根号,减小初学生计算出错的几率,还可以让几何问题中距离问题的求解得到极大地简化,帮助学生理解记忆。除此之外,数形结合的思想在求解二次函数和一次函数的交点时应用很普遍,比如在求解直线与抛物线的交点时,可以先画出直线y=x-2和抛物线y=x2-2x+2的草图,能够看出两条直线在平面直角坐标系中的交点有两个,分别在第三第四象限,然而这两个点具体坐标没办法通过草图来确定,这时候我们可以利用“数”,列方程组y=x-2和y=x2+2x-2,从而算出两个根分别为0和-2,因此交点坐标为(0,-1)(-2,-3)。老师在与学生交流中,应该引导学生独立运用数形结合的方法解决问题,不要让学生因为害怕老师而对于有疑惑的地方不敢提出来,掌握一定的数学思想有助于学生更好地学习数学,把抽象的数字转化为直观的图形,把复杂的图形转化为严谨的数字,两者之间相互转化,选择合理的方法解决数学中的问题,能够快速准确的解决数学问题,让学生的解题思路更清晰明了。
总之,数形结合法在初中数学中的应用较为普遍,每个同学都应该尽量掌握这种方法,可以有效帮助解决数学问题。此外,数形结合思想在解决画图的问题时,要注意画图的规范性,起初运用这种方法的时候可以先让学生模仿老师的做法,通过模仿的方式引导学生熟悉这种方法,在学生掌握以后就可以达到熟练运用,帮助学生进一步学习难以理解的知识。
参考文献
[1]马志奇.数形結合思想在初中数学教学中的应用[J].学周刊,2020(29):51-52.
[2]王玉敏.数形结合思想在初中数学教学中的实践与研究[J].山西青年,2020(17):187-188.
[3]朱响丹.数形结合思想在初中数学教学中的应用策略探讨[J].考试周刊,2020(75):79-80.
(责编:杨梅)
作者简介:苗志艳(1978—),女,河北唐山人,本科,从事数学教育教学工作。