应用于运动视频目标跟踪的改进粒子滤波模型技术研究

刘懿
关键词: 目标跟踪; 遗传算法; 运动视频; 粒子滤波; HSV分布模型; 退化权值
中图分类号: TN713?34; TP391 ? ? ? ? ? ? ? ? ? ? 文献标识码: A ? ? ? ? ? ? ? ? ? ?文章编号: 1004?373X(2019)03?0065?03
Abstract: As the mainstream technology of target tracking, particle filtering has broad application prospect in human motion video analysis. A motion video target tracking algorithm based on improved particle filtering model is proposed to further improve the accuracy of target tracking. The target observation model is constructed by using HSV distribution model, and then the particle filter and degradation weight are combined to detect whether the moving target appears in the target observation model. The genetic algorithm is introduced to improve the particle filtering algorithm, and eliminate the phenomenon of particle degradation. The test verification was conducted with the sports athlete video. The experimental results show that the proposed algorithm can effectively complete the human target tracking in motion video, and has higher accuracy and operation efficiency than other algorithms.
Keywords: target tracking; genetic algorithm; motion video; particle filtering; HSV distribution model; degeneration weight0 ?引 ?言
目標跟踪技术最开始应用于军事领域,并逐渐在民用领域得到快速的推广。目标跟踪技术能够观测被跟踪目标的属性与状态,从而获取被跟踪目标在不同时刻的变化。通过分析这些变化能够对目标实现位置跟踪[1?2]。一般来说,视频目标跟踪需要对图像序列进行分析以便完成对运动目标的检测,包括目标的提取、识别和跟踪,从而得到跟踪目标的各项运动参数,如加速度、速度、位置等[3]。
如何实现复杂背景下运动目标的准确跟踪一直是科研人员研究的热点问题。基于蒙特卡罗思想的粒子滤波算法一直广泛应用于各种非线性及非高斯系统,可以有效应用于目标跟踪。因此,针对运动视频目标跟踪问题,本文提出一种基于改进粒子滤波模型的运动视频目标跟踪算法。利用运动员视频进行具体测试,结果显示在无任何先验信息的情况下,提出的算法能够较好地跟踪运行视频中的人体目标,验证了其可行性和先进性。1 ?相关研究
文献[4]提出一种基于嵌入Mean?Shift的粒子滤波目标跟踪。文献[5]提出面向颜色特征自适应融合的改进粒子滤波目标跟踪算法。文献[6]提出基于粒子滤波和拉普拉斯方法的目标跟踪技术。以上几种方法均采用混合优化策略,通过将先进的优化算法和粒子滤波算法进行结合来提高目标跟踪的性能,以便弥补粒子滤波算法的缺陷。遗传算法作为一种仿生进化式算法,其基本理念是适者生存规则和种群进化,具有全局搜索能力高和前期收敛速度快的特点,可用于消除粒子退化问题。因此,本文引入遗传算法对粒子滤波算法进行改进,以便增加粒子的多样性,从而消除粒子退化的现象。此外,采用HSV分布模型构建目标观测模型,然后结合粒子滤波器和退化权值检测运动目标是否出现在目标观测模型中。

对三种跟踪算法进行测试,结果如表1所示。从表1可以看出,提出的方法明显优于其他两种方法,其平均误差精度一直维持在比较低的水平。在测试的视频序列中,本文提出的跟踪算法、标准粒子滤波算法、Mean?Shift粒子滤波算法的平均误差分别为18.89,24.71,36.42。

4 ?结 ?论
本文提出一种基于改进粒子滤波模型的运动视频目标跟踪算法。首先采用HSV分布模型构建目标观测模型,然后结合粒子滤波器和退化权值来检测运动目标是否出现在目标观测模型中。最后引入遗传算法对粒子滤波算法进行改进,以便消除粒子退化的现象。利用运动员视频进行具体测试,结果显示在无任何先验信息的情况下,提出算法能够较好地跟踪运行视频中的人体目标,验证了其可行性和先进性。
参考文献
[1] MILAN A, SCHINDLER K, ROTH S. Multi?target tracking by discrete?continuous energy minimization [J]. IEEE transactions on pattern analysis & machine intelligence, 2016, 38(10): 2054?2068.
[2] DEMIGHA O, HIDOUCI W K, AHMED T. On energy efficiency in collaborative target tracking in wireless sensor network: a review [J]. IEEE communications surveys & tutorials, 2013, 15(3): 1210?1222.
[3] YANG B, NEVATIA R. Multi?target tracking by online lear?ning a CRF model of appearance and motion patterns [J]. International journal of computer vision, 2014, 107(2): 203?217.
[4] 侯一民,贺子龙.嵌入Mean Shift的粒子滤波目标跟踪算法[J].计算机系统应用,2012,21(12):80?84.
HOU Yimin, HE Zilong. Particle filter target tracking algorithm embedded in Mean Shift [J]. Computer systems and applications, 2012, 21(12): 80?84.
[5] BIAN L, LI T, WEI Y, et al. Improved particle filtering target tracking algorithm for HLBP and color feature adaptive fusion [J]. Journal of Nanjing Normal University, 2018(1): 45?49.
[6] QUANG P B, MUSSO C, GLAND F L. Particle filtering and the Laplace method for target tracking [J]. IEEE transactions on aerospace & electronic systems, 2016, 52(1): 350?366.
[7] ZHU S, WANG D, CHANG B L. Ground target tracking using UAV with input constraints [J]. Journal of intelligent & robotic systems theory & applications, 2013, 69(1): 417?429.
[8] HOANG H G, BA T V. Sensor management for multi?target tracking via multi?Bernoulli filtering [J]. Automatica, 2014, 50(4): 1135?1142.
[9] CHEN Y. Target tracking feature selection algorithm based on Adaboost [J]. Telkomnika Indonesian journal of electrical engineering, 2014, 12(1): 734?740.
[10] 吕韵秋,刘凯,费聚锋,等.基于压缩跟踪和遗传算法的实时跟踪方法[J].制导与引信,2016,37(4):34?39.
L? Yunqiu, LIU Kai, FEI Jufeng, et al. Real?time tracking method based on compression tracking and genetic algorithm [J]. Guidance & fuze, 2016, 37(4): 34?39.
[11] 刘峰,宣士斌,刘香品.基于云自适应粒子群优化粒子滤波的视频目标跟踪[J].数据采集与处理,2015(2):452?463.
LIU Feng, XUAN Shibin, LIU Xiangpin. Video target tracking based on cloud adaptive particle swarm optimization particle filter [J]. Data acquisition and processing, 2015(2): 452?463.