网站首页  词典首页

请输入您要查询的论文:

 

标题 北京西郊地区地下水纳污能力分析
范文 王新娟 孙颖 邵景力 张院



摘要:在分析北京市西郊地区水文地质条件的基础上,结合区域水资源、环境特点,分别运用MODFLOW和MT3DMS建立第三水厂水源地下水溶质运移模型,结合SCE优化算法,对区域地下水可承纳典型污染物的最大排放量进行了计算,据此提出区域地下水环境保护对策和措施,为指导和控制污染物排放和制定地下水保护方案提供科学依据。
关键词:环境容量;水质模型;典型污染物;SCE算法
中图分类号:X52 文献标志码:A 文章编号:1672-1683(2014)06-0031-04
伴随着社会经济的发展,水资源逐渐成为制约城市发展的瓶颈。北京地处半干旱地区,地表水资源不足,地下水开发利用程度高,地下水供水占全市总供水量的70%左右[1]。北京西郊地区是北京市重要的供水水源地,分布有北京市水源三厂、石景山水厂、水源四厂等水源地和一些为市区供水的自备井,地下水供水规模为53.5×104 m3/d。随着地下水资源的连年超采,西郊地区水资源、水环境发生了重大改变,地下水受到不同程度的污染,地下水主要超标因子为总硬度、硝酸盐氮和氯离子等。
地下水污染具有复杂性、隐蔽性和难以恢复的特点,一旦遭受了污染,其恢复和净化的过程是漫长的,而且处理技术难度大,治理费用昂贵[2-5]。所以要在经济快速发展的同时做好水资源保护,一方面要合理规划使用水资源,另一方面则必须充分考虑地下水本身的防护能力即地下水环境容量。地下水环境容量是指在不破坏地下水水质的情况下,地下含水层通过土壤交换吸附、生物降解等途径所能接受的外界污染物排放量。地下水环境容量的确定将为地下水污染防治、地下水污染总量控制提供重要依据[6-7]。
1 研究区概况
研究区位于永定河冲洪积扇中上部,以为北京市供水的第三水厂水源地为核心,加上其补给区,面积84.08 km2,主要分布第四系松散堆积物。孔隙水含水层由永定河冲洪积砂、卵石、含砾石砂及砂组成。地下水接受大气降水、河谷潜流、山前侧向径流、河渠、农业灌溉及人工回灌的入渗补给,补给条件良好,是冲洪积扇中下游和冲洪积平原地下水的补给区。但同时,根据《华北平原地下水可持续利用调查评价(北京)报告》(谢振华等)本区地下水自身防污性能较差,加上该区人类活动影响强度大,污染源荷载类型复杂,地下水污染风险高。
2 地下水流模型的建立
水流模型的范围为整个城近郊区及南部丰台和大兴、通州部分地区,面积1 471.14 km2。研究区位于永定河中上游地区,为永定河冲洪积扇区,含水层由单一的砂、卵、砾石潜水含水层,过渡到砂、砾石层和粘土层交替出现的多层含水层。
经分析,将模型在空间上分为四个含水层组:潜水含水层组,在西郊单一含水层区有水厂开采、集中开采和农业开采,东部地区主要是农业开采;第一承压含水层组,主要是城市工业和生活用水及部分农业开采;第二承压含水层组,主要是城市工业、城镇生活、乡镇工业、人畜用水及少量农业开采;第三含水层组,工业开采、集中开采、城镇生活用水。水文地质概念模型为非均质各向同性、四层结构、三维空间的非稳定地下水流。
在水文地质概念模型基础上,形成描述研究区地下水流动的数学模型,运用地下水模型软件Visual Modflow 建立模拟区地下水流数值模型,通过流场和典型孔水位过程线的拟合,以及对模拟区地下水均衡进行分析,进行模型的识别和验证。
3 地下水水质运移模型的建立
3.1 模型范围的确定
在研究区地下水流模型的基础上,利用质点追踪技术,研究水源地的补给范围。根据MODFLOW计算出来的流场,利用MODPATH程序包可以追踪一系列虚拟的质点来模拟从用户指定地点溢出污染物的运动。这种追溯跟踪方法可以用来描述给定时间内的截获区、质点运移路径的长度和到达指定位置的时间。
质点追踪包括正向追踪和反向追踪。正向追踪可以用来考察地下水流的方向、垃圾淋滤液的运动轨迹、到达指定位置的时间和影响的范围等;反向追踪可以用来计算水力捕获带范围,了解水源地的补给来源,判断是否有水质点来自固体废弃物填埋场区域等。本文首先采用质点反向追踪判定水源三厂捕获带范围,然后在捕获带范围内进行污染源调查,再对调查所得的固体废弃物填埋场进行正向追踪,判断固体废弃物填埋场对水源三厂的影响以及相互之间的关系。
通过质点反向追踪,得到水力捕获带范围(图1),从而确定溶质模型范围的面积为84.08 km2。
3.2 水质模型的概化
由于本次重点研究一定时间内水源三厂保护区范围地下水对特定污染源所排放的典型污染物的承纳能力,考虑到溶质模型基础数据还不够精细,对模型进行一定的简化。溶质模型区域基本位于单一层区,模型西、西北边界为流入边界,东和南边界为流出边界,边界交换量根据实际水文地质条件参考研究区水流模型的计算结果得出。假设水流模型为二维稳定流,水文地质参数采用研究区水流模型所识别的参数,降雨采用多年平均值。仅考虑边界流入流出及降雨蒸发条件时,最终得到溶质模型区域内稳定流场的形态见图2。
3.3 污染源及污染因子的确定
据北京市水文队环境地质研究所地下水环境监测年报,西郊地区浅层地下水总硬度、NO3-N及Cl-水质均有超标现象。由于与硬度有关的Ca2+和Mg2+同时受矿物溶解和阳离子交换作用影响,地下水中总硬度升高并非完全因人类活动引起,因此,本次模型计算选择NO3-N作为计算指标。由于Cl-与NO3-N都是典型受人类活动影响的离子,且Cl-是典型的保守离子,从地表进入地下水过程中很少由于吸附作用或植物吸收而滞留在包气带中,也不会发生化学变化使其价态和质量发生改变,因此选择Cl-作为NO3-N输入强度和分布的参照离子。
通过对水源三厂及其补给带污染源实地调查,将污染源归为两类,一类是以生活污水和工业废水组成的城市污水,污染途径是市政管网渗漏;另一类是固体废弃物填埋场,通过垃圾渗滤液下渗污染地下水。由此确定溶质模型区内城市污水以面状污染源处理(图3),按照行政分区将面状污染源分为两个区域,区一为海淀区;区二为石景山区,固体废弃物填埋场则以点状污染源处理。通过质点正向追踪可知,对水源三厂可能造成影响的固体废弃物填埋场为田村北、西冉村、北坞村东固体废弃物填埋场(图4)。
3.4 水质运移概念模型
在简化的水流模型的基础上,采用MT3DMS程序建立溶质运移模型。MT3DMS不但可以同时模拟地下水中多种污染物组份的物理迁移过程(包括对流、弥散、吸附等),而且可以(或结合其它软件如RT3D)模拟组份在运移过程中发生的简单(或复杂)生物和化学反应。
模型采用2008年6月份的污染物浓度数据作为初始浓度数据。潜水含水层自由水面为系统的上边界,通过该边界,潜水与环境发生垂向上的溶质交换,如接受污染物入渗补给等。地下水中污染物主要来源为垃圾淋滤液的入渗、城市管网渗漏;主要排泄方式为随着地下水流动流出。另外,假定侧向流入研究区的地下水浓度和边界区地下水浓度相同,为Ⅱ类水。
3.4.1 源汇项处理
(1)面状污染源。
2005年海淀区和石景山区城市污水管网渗漏量基本情况见表1,按污水排放量的4%计算城市管网的渗漏强度,以面状强度带入模型计算。
(2)点状污染源的处理。
模型中固体废弃物填埋场污染物通过淋滤方式污染地下水,淋滤液渗滤强度为100 m3/d。据以往调查成果,垃圾场淋滤液的化学成分极为复杂,既有有机污染组分,又有无机污染组分,此外还有一些微量重金属污染组分,表现出很强的综合污染特征;垃圾场的淋滤液成分和浓度受垃圾种类的影响。生活垃圾NH4+含量为2 720 mg/L,NO2-N含量为0.003 04 mg/L;建筑垃圾淋滤液中NH4+含量为1.4~4 mg/L,NO2-N含量为5.78~13.69 mg/L,都已超过地下水Ⅲ标准。
3.4.2 水文地质参数
溶质模型的水文地质参数根据以往的研究经验确定,纵向弥散度为30,横向弥散度为6,孔隙度为0.3。另外由于研究区内主要是颗粒粗大的砂卵砾石含水层,渗透系数大,NO3-的吸附可忽略,衰减系数为一级反应动力学系数,参考值为4.32×10-5/d,Cl-的吸附与衰减均可忽略。
3.5 溶质模型的建立
水质运移模型计算区面积84.08 km2,使用Modflow模块对水流进行模拟,采用有限差分法,进行矩形剖分,其剖分单元在水流模型的基础上加密,长100 m,宽100 m。模型的初始浓度为2008年6月浓度数据,模型源汇项初值根据分区情况给定,运用MT3DMS软件在参照稳定水流模型基础上运行20年即得到了初始的溶质运移模型,为下一步计算固体废弃物填埋场典型污染物最大排放量做准备。
4 可承纳的典型污染物最大控制总量
为了分析污染源对水源三厂水质的影响,并且计算三厂水质保持一定目标浓度条件下各污染源所允许的最大排污量。需对溶质运移模型进行多方案试算,结合优化算法最终得到在三厂水质保持一定条件下污染源所允许的最大排污总量。
假定面状污染物的排放稳定,以面状强度给出,仅优化固体废弃物填埋场的污染物排放量。根据质点追踪情况,仅考虑对地下水威胁程度较大的田村北、北坞村东、西冉村固体废弃物填埋场。
4.1 优化方法
SCE(Shuffled Complex Evolution)算法是Duan 等人于1992 年在求解概念性降雨径流模型参数自动率于的优化问题时提出的[8],该算法在水资源开发利用领域得到了成功的应用。
SCE算法的主要特征是采用遗传算法中生物竞争进化的思想,并通过对各个复合型的定期洗牌重组,来确保每个复合型获得的信息能在整个问题空间中得到共享,从而使算法快速收敛于全局最优解的同时,避免陷入局部最优并避免早熟现象的出现。相对于其他智能优化算法,SCE算法更有利于求解复杂、非线性、不可导、非凸的高维优化问题。研究结果表明[9-13],相对于遗传算法和单纯形算法,SCE优化效果最佳,收敛速度较快,稳定性好,特别是对于高维实际问题更能体现算法的稳健性。
本文采用SCE算法和溶质模型相耦合来进行研究区最大可容纳污染物量的计算。
4.2 优化方案及计算结果
溶质模型应力期为20年,因此本次优化分析针对的是20年内不使水源三厂水质超标情况下,各污染源所允许的总的最大排污量。采用《地下水质量标准》(GB/T 14848-93)规定的NO3-N及Cl-离子的Ⅲ类水标准,即NO3-N≤20 mg/l,Cl-≤250 mg/l。最终根据SCE优化算法与MT3DMS程序包耦合程序计算得出20年内垃圾填埋场总的最大临界排放浓度。根据SCE算法特点,进化过程采取总量控制原则,按照SCE算法的进化准则改变各污染源的排放浓度,逐步得到各污染源总的排放浓度的最大值。污染点总的最大临界排放浓度进化过程见图5和图6,各污染点污染物排放优化结果见表2。
根据表2里各污染源排放组合代入模型中,经模拟计算,水源三厂保护区内,最大的NO3-(以N计)浓度为19.99 mg/l,Cl-离子最大浓度为249.13 mg/l。接近于Ⅲ类水标准,说明计算得到的污染物排放组合能够满足20年内不使水源三厂水质超标要求。
5 结语
本文在研究区水流模型建立的基础上,以西郊地区重要水源地水源三厂为重点研究对象,通过质点反向追踪获取水源三厂补给区范围。结合野外调查获得的潜在污染源分布,通过质点正向追踪,确定了地下水水质模型范围面积为84.08 km2。通过对污染源特征调查分析,确定了研究区典型污染因子,建立了溶质运移模型。将数学优化方法与溶质运移模型相耦合,计算了20年内水源三厂区域水质接近于Ⅲ类水标准的条件下,可承纳的典型污染物最大允许排放量分别为:NO3-(以N计)浓度,北坞村东18.59 t/a、田村北42.29 t/a、西冉村21.45 t/a;Cl-浓度,北坞村东235.66 t/a、田村北441.13 t/a、西冉村270.13 t/a。
西郊地区地下水源保护区含水层防污性能差,地下水极易遭受污染,污染荷载类型复杂,工业和生活污水排放量大,且市政管网相对陈旧,渗漏水是较多,加上生活垃圾非正规填埋场较多,对地下水威胁较大,因此建议:定期维护和保养市政污水管网,防止污水渗漏;治理垃圾填埋场,控制污染物排放量,特别是威胁到三厂水源地的三个垃圾填埋场的污染物排放量;适当人工回灌优质地表水,增加地下水资源量,改善浅层地下水水质状况;在地下水污染风险评价和最大污染物排放量的基础上,建立城市水源地地下水污染预警预报系统,为地下水源地保护提供服务。
参考文献(References):
[1] 孙清元.北京市地下水资源承载力评价及其开发利用对策研究[J].技术经济研究,2007,9:21-24.(SUN Qing-yuan.Discussion on the relations between the quality and use of land and the selectionof property system[J].Study on Technical Economy Technical and economic research,2007,9:21-24.(in Chinese))
[2] 杨金忠等.多孔介质中水分及溶质运移的随机理论[M],北京:科学出版社,2000.(YANG Jin-zhong.Water and solute transport in porous media of stochastic theory[M],Beijing:Science press,2000.(in Chinese))
[3] 杨辉,垃圾渗滤液溶质运移的机理及数学模型[J].工业安全与环保,2009,35(1):33-25.(YANG Hui,The mechanisms of solute migration and mathematical model in landfill leachate transport[J].Industrial Safety and Environmental Protection,2009,35(1):33-25.(in Chinese))
[4] 刘长礼,张云,张凤娥,等.北京某垃圾处置场对地下水的污染[J].地质通报,2003,22(7):531-535.(LIU Chang-li,ZHANG Yun,ZHANG Feng-e,Assessment of groundwater pollution by a certain landfill site of refuse in Beijing[J],Geological Bulletin of China,2003,22(7):531-535.(in Chinese))
[5] 王翊虹.北京北天堂地区城市垃圾填埋对地下水的污染[J].水文地质工程地质,2002(6):45-47.(WANG Yi-hong.Pollution of municipal landfill to groundwater in Beitiantang,of Beijing[J].Hydrology and Water Resources Engineering,2002(6):45-47.(in Chinese))
[6] 李蜀庆,李谢玲,伍溢春.我国水环境容量研究状况及其展望[J].高等建筑教育,2007,16(3).(LI Su-qing,LI Xie-ling,WU Yi-chun.Actuality and prospect on water environment capacity research[J].Journal of Architectural Education in Institutions of Higher Learning,2007,16(3).(in Chinese))
[7] 邵景力.地下水环境容量的基本理论和计算方法[J].地学前缘,2010,17(6):39-46.(SHAO Jing-li.Basic theories and calculation methods of groundwater environmental capacity.Earth Science Frontiers,2010,17(6):39-46.(in Chinese))
[8] Duan Q,Gupt a V K,Sor oo shian S.A shuffled complex evolution approach for effective and efficient global minimization.Journal o f Optimization Theory and Applications,1993,76(3):501-521.
[9] Nunoo,Jolibois Jr Agyei.Optimization of pavement preservation programming using shuffled complex evolution algorithm.TRB Annual Meeting CDROM,2002:6-7.
[10] 李向阳.水文模型模糊多目标SCE- UA 参数优选方法研究[J].中国工程科学,2007,9(3):52-57.(LI Xiang-yang.Study on fuzzy multi-objective SCE-UA optimization method for rainfall-runoff models[J].Engineering Science,2007,9(3):52-57.(in Chinese))
[11] 马海波,董增川,张文明,等.SCE-UA算法在 TOPMODEL 参数优化中的应用[J].河海大学学报:自然科学版,2006,30(4):361-364.(MA Hai-bo,DONG Zeng-chuan,ZHANG Wen-ming,et al.Application of SCE-UA algorithm to optimization of TOPMODEL parameters[J].Journal of Hohai University:Natural Sciences,2006,30(4):361-364.(in Chinese))
[12] 徐冬梅,邱林.SCE-UA 算法有效估计马斯京根模型参数[J].人民黄河,2008,30(11):31-35.(XU Dong-mei,Qiu Lin.SCE- UA algorithm estimates mas Beijing root model parameters effectively[J].Yellow River,2008,30(11):31-35.(in Chinese))
[13] 姚磊华.用改进的遗传算法和高斯牛顿法联合反演三维地下水流模型参数[J].计算科学,2005,22(4):311-318.(YAO Lei-hua,Parameter identification in a 3-D groundwater flow numerical model:an improved genetic algorithm and the Gauss-Newton method[J].Chinese Journal of Computational Physics,2005,22(4):311-318.(in Chinese))
随便看

 

科学优质学术资源、百科知识分享平台,免费提供知识科普、生活经验分享、中外学术论文、各类范文、学术文献、教学资料、学术期刊、会议、报纸、杂志、工具书等各类资源检索、在线阅读和软件app下载服务。

 

Copyright © 2004-2023 puapp.net All Rights Reserved
更新时间:2025/3/16 14:18:45