网站首页  词典首页

请输入您要查询的论文:

 

标题 例说充分条件、必要条件常见判断法
范文

    夏鸿鑫

    

    充分条件、必要条件的判断是“常用逻辑用语”中的重点也是难点,学生对此类问题以猜、估为主,因而常常出错,对此,本文用一例谈谈充分条件、必要条件六种常见判断方法.

    例指出下列命题中,p是q的什么条件(填“充分必要条件”“必要不充分条件”“充分不必要条件”或“既不充分也不必要条件”之一).

    (1)p:a+b+c=0,q:1是方程ax2+bx+c=0的一个根.

    (2)p:x≠2或y≠3,q:x+y≠5.

    (3)p:m+3<0,q:方程x2-x-m=0没有实数根.

    (4)p是r的充要条件,r是s的必要不充分条件,s是q的必要条件.

    (5)p:|x|<1,|y|<1,q:|x+y|+|x-y|<2.

    (6)p:α,β是第一象限角,α>β,q:α,β是第一象限角,tanα>tanβ.

    解(1)定义法:

    若a+b+c=0,有a×12+b×1+c=0,则1是方程ax2+bx+c=0的一根,即pq;

    反之,若1是方程ax2+bx+c=0的一根,有a×12+b×1+c=0,则a+b+c=0,即qp.

    故p是q的充分必要条件.

    评注:判断p是q的什么条件,通常是根据充分、必要条件的定义分析判断,由p成立时,能否推出q成立,得到是否具有充分性;反过来,q成立时,能否推出p成立,得到是否具有必要性.

    (2)等价命题法:

    瘙 綈 p:x=2且y=3,

    瘙 綈 q:x+y=5,显然有

    瘙 綈 p

    瘙 綈 q且

    瘙 綈 q

    瘙 綈 p,即qp且pq,故p是q的必要不充分条件.

    评注:当含有命题否定形式时,可利用互为逆否命题同真同假进行转化后加以判断.

    (3)集合法:

    p的真值集合为A={|m<-3},由方程x2-x-m=0没有实数根得Δ=(-1)2-4(-m)<0,即m<-14,则q的真值集合为B=mm<-14,显然AB,故p是q的充分不必要条件.

    评注:满足条件p的元素构成集合P,即P={x|p(x)},满足条件q的元素构成Q,即Q={x|q(x)}.条件p与q的关系也可根据集合P,Q之间的关系加以判断.

    集合P,Q关系条件p与q的关系

    PQp是q的充分条件

    QPq是p的充分条件

    PQp是q的充分不必要条件

    QPq是p的充分不必要条件

    P=Qp是q的充要条件

    PQ且QPp是q的既不充分也不必要条件

    (4)传递法:

    由题意,pr,sr,但rs,qs,

    从而有qsrp,但pq,

    所以p是q的必要不充分条件.

    评注:由充分条件、必要条件概念知,如果pq,qr,rs,st,则pt,也就是p是t的充分条件,这一点类似于等量(不等量)傳递性.

    (5)图形法:

    由题意,|x|<1,|y|<1,是中心在原点边长为2的正方形内部区域(不包括边界).

    |x+y|+|x-y|<2,在第一象限内:

    ① 当x>0,y>0,x>y,得x<1;

    ② 当x>0,y>0,x

    图1

    图2

    然而,根据对称性得到整个区域是中心在原点,边长为2的正方形内部区域(不包括边界),两个区域完全一致,所以p是q的充要条件.

    评注:命题p,q所表示的元素是点集时,可考虑作出它们对应的区域(图形),再比较区域(图形)之间的包含关系.

    (6)特取法:

    如,α=361°,β=89°,α>β/tanα>tanβ,

    反过来,α=89°,β=361°,tanα>tanβ/α>β,

    即p/q,且q/p,故p是q的既不充分也不必要条件.

    评注:对于不能推断出的命题,可以举出反例(哪怕只有一个)即可.

    巩固指出下列命题中p是q的什么条件(填“充分必要条件”“充分不必要条件”“必要不充分条件”“既不充分也不必要条件”之一).

    (1)设实数a>1,b>1,p:aa-b.

    (2)p:a≠β,q:tanα≠tanβ.

    (3)p:函数y=2x+m-1(m∈R)有零点,

    q:函数y=logmx(m>0且m≠1)在(0,+

    SymboleB@ )上为减函数.

    (4)在△ABC中,a,b,c是A,B,C的对边,p:A>B,r:a>b,q:sinA>sinB.

    (5)设a>0,b>0,p:a2+b2<1,q:ab+1>a+b.

    (6)设x∈R,p:1

    答案(1)充分必要条件;

    (2)必要不充分条件;

    (3)必要不充分条件;

    (4)充分必要条件;

    (5)充分不必要条件;

    (6)既不充分也不必要条件.

随便看

 

科学优质学术资源、百科知识分享平台,免费提供知识科普、生活经验分享、中外学术论文、各类范文、学术文献、教学资料、学术期刊、会议、报纸、杂志、工具书等各类资源检索、在线阅读和软件app下载服务。

 

Copyright © 2004-2023 puapp.net All Rights Reserved
更新时间:2025/4/15 20:27:40