标题 | 变式训练教学实例研究 |
范文 | 李胤魁 张艳群 【摘要】随着素质教育改革的深入,教育注重强调培养学生的应变能力、创新能力,更注重学生的学习向自主型、能力型、智力型、开放型转变.如何使学生从题海战术走出,是当前教育需要解决的一个重大课题.数学教学中,有很多的教法我们可以研究、探讨,而数学变式训练是提高教学效果有效的方法之一.本文结合我国多年来变式教学理论的发展以及一些实例,对变式训练教学的理论和内容进行了讨论. 【关键词】变式训练;变式教学 近年来,许多教育工作者针对变式教学进行了全面的实验研究和理论分析[1-4].一方面,是将传统课堂教学中的概念性变式进行科学的恢复和整理;另一方面,是将传统教学中的概念性变式进一步推广到过程性变式,进而能使变式教学适用于数学概念的掌握,能在教学中提高学生的数学学习经验. 一、一题多变 通过变式教学.不仅仅解决一个问题.而是要解决一类问题.避免“题海战术”,从而开拓学生解题思路,培养学生的发散思维.因此,课堂教学内容要求新、求变,由原有题目延伸出具有相关性、相似性、相反性的一些新问题,深刻挖掘例题以及习题的内涵.例如,已知:如图1所示,点C为线段AB上一点,△ACM,△CBN是等边三角形.求证:AN=BM. 图1 图2 证明∵△ACM和△CBN是等边三角形. ∴MC=AC,CN=CB,∠ACN=∠MCB, ∴△ACN≌△MCB,∴AN=BM. 变式1在例题中,连接DE,求证:(1)△DCE是等边三角形.(2)DE∥AB. 分析(1)可证△ADC≌△MEC,则DC=EC,因为∠DCE=60°,所以△DCE是等边三角形. (2)由(1)易证∠EDC=∠ACM=60°,所以DE∥AB. 变式2例题中,连接CF,求证:CF平分∠AFB. 分析过点C作CG⊥AN于G,CH⊥BM于H,由△ACN≌△MCB,可得到CG=CH,所以CF平分∠AFB. 变式3如图2所示,点C为线段AB上一点,△ACM、△CBN是等边三角形,P是AN的中点,Q是BM的中点,求证:△CPQ是等边三角形. 证明∵△ACN≌△MCB,∴AN=BM,∠ABM=∠ANC. 又∵P、Q分别是AN、BM的中点,△BCQ≌△NCP, ∴CQ=CP,∠BCQ=∠NCP,∠PCQ=∠NCP+∠NCQ=∠BCQ+∠NCQ=∠NCB=60°, ∴△CPQ是等边三角形. 二、一题多问 教学中要特别重视对重点例题和习题的“改装”或变形.数学的思想方法都蕴含在教材经典例題或习题中,教师在教学过程中要对这类习题进行深入的挖掘.即通过一个典型的问题,尽可能多地覆盖知识点,把零散的知识串成线,有利于知识的重构,加深学生对知识的理解.例如,等比数列{an},an>0,n=1,2,…,a1-a2=14,a23=4a2a6. (1)求数列{an}的通项公式. (2)设b1=1,b2=1,bn=log2a1+…+log2an,求数列{bn}的通项公式. (3)求1bn的前n项和. 解(1)设数列{an}的公比为q,由a23=4a2a6得q2=14.由条件an>0,n=1,2,…,可知q=12. 由a1-a2=14得a1=12.故数列{an}的通项式为an=12n. (2)由bn=log2a1+…+log2an=(-1-2-…-n) =-n(n+1)2. (3)故1bn=-121n-1n+1, 1b1+1b2+…+1bn=-21-12+12-13+…+1n-1n+1=-2nn+1, 所以数列1bn的前n项和为-2nn+1. 变式教学在高中数学学科教学中有着不容忽视的作用.通过教师教学的积累与发现,根据不同的内容设计变式教学.在课堂教学的环节中恰当运用变式教学,就可以收到意想不到的教学效果. 【参考文献】 [1]肖锋.课堂教育技能的理论与实践[M].杭州:浙江大学出版,2012. [2]尚燕.数形结合法用于高中数学教学的实践探究[J].中国校外教育,2016(24):55. [3]高敏.高中数学变式教学的实践研究[D].长春:东北师范大学,2010. [4]谢景力.数学变式教学的认识与实践研究[D].长沙:湖南师范大学,2006. |
随便看 |
|
科学优质学术资源、百科知识分享平台,免费提供知识科普、生活经验分享、中外学术论文、各类范文、学术文献、教学资料、学术期刊、会议、报纸、杂志、工具书等各类资源检索、在线阅读和软件app下载服务。