网站首页  词典首页

请输入您要查询的论文:

 

标题 基于拥挤效应的陕西省水利投资最优规模研究
范文

    任静 陆迁

    摘要 确定最优投资规模是陕西省水利投资决策的关键问题之一。目前已有学者通过实证研究表明,区域性准公共物品在最优供给中存在“拥挤效应”,同时也有学者已从理论上证实,“拥挤效应”会影响准公共物品的最优供给规模。而确定准公共物品最优投资规模的传统方法——道格拉斯函数法,却忽略了其“拥挤效应”属性,因而产生一定局限。那么,陕西省水利设施作为一种具体的区域性准公共物品,其在最优供给中是否也存在“拥挤效应”?拥挤程度如何?如何实证的估计具有拥挤性的水利设施最优投资规模?基于上述思路,本文首先借鉴国外学者对“拥挤效应”的测度方法,建立水利设施拥挤效应测度模型,以验证陕西省水利设施的“拥挤效应”及拥挤程度;其次,将“拥挤效应”的测度方法引入到传统的道格拉斯函数法中,对其进行修正,建立估计拥挤性水利设施最优投资规模的实证模型;最后,运用陕西省1978-2011年时间序列数据,对上述两个模型进行实证估计。结果表明,陕西省水利设施供给存在显著的拥挤效应;若考虑到“拥挤效应”,当人均水利投资约占人均产出的5.74%时,陕西省水利投资水平达到最优;与最优水平相比,陕西省历年的水利投资均低于其最优水平。此外,模型中水利设施供给弹性的估计值(=-0.441 8)表明水利设施具有较强的公共物品性质,水利投资的主体应该是以政府为代表的公共部门;同时,人均水利设施供给量对人均补贴的弹性(φ=0.380 1)为正且数值不小,说明中央政府的财政补助及民间资金对改善陕西省人均水利供给会产生积极影响,因此,陕西省应重视民间资金的引入,积极拓展融资渠道,构建多元化的投融资机制。

    关键词 水利投资;准公共物品;拥挤效应;最优投资规模;陕西省

    中图分类号 F282 文献标识码 A 文章编号 1002-2104(2014)04-0169-08

    水利是国民经济的基础产业和基础设施。水利发展有赖于投入的保障,而投入不足,水资源供需矛盾突出,制约着陕西经济社会的可持续发展。目前省内40%的大型灌区骨干工程、50%-60%的中小型灌区存在大型灌排泵站的设备完好率不足60%[1]。2011年 “中央一号文件”和中央水利工作会议都将水利问题提到了前所未有的高度,提出未来10年水利投资将达到4万亿元,陕西省水利投资也迎来了前所未有的新机遇,水利建设投入规模大幅增加。但是,水利投资存在一个最优投资规模问题,任何投资过度或不足都会影响投资效率,因此,如何确定水利最优投资规模就成为水利投资决策的关键问题之一。

    目前理论界确定水利等基础设施最优投资规模通常采用生产函数法,即将基础设施投资作为一种生产要素,运用生产函数估计它们的边际贡献,确定其最优投资规模。该方法简单明了,容易估算,国内外许多学者采用这种方法对基础设施等投资最优规模进行计算[2-4,8-12,20-21]。但该方法缺陷是忽略了基础设施具有准公共物品的特性。这种准公共物品实质上是一种“俱乐部产品”(一种排他且非竞争性准公共物品),在使用中会产生 “拥挤效应”现象,即当使用者人数超过一定规模后,俱乐部产品则具备一定的竞争性,从而使其人均获得量小于人均供给水平。一些学者仅在理论层面上基于拥挤性讨论了“俱乐部产品”的最优投资规模问题[3,5,7],但是,关于拥挤性公共物品最优投资规模的实证研究目前尚处于探索性阶段。

    水利作为公益性极强的基础设施,具有明显的准公共物品属性。我国学者刘小鲁证实了我国省际一般性准公共物品的最优供给中存在显著的拥挤效应[6]。但是,水利设施是准公共物品的一种具体形态,若将准公共物品的拥挤效应纳入到水利最优投资规模的分析框架中,需要解决两个问题:首先是水利设施的最优供给中是否也存在拥挤效应?拥挤程度如何?其次是如何构建一个包含拥挤性的水利投资最优规模决定模型,估算出拥挤性的水利最优投资规模?因此,本文运用陕西省1978-2011时间序列数据,实证估计陕西水利投资拥挤性效应,确定出陕西水利最优投资规模。

    2 模型构建

    2.1 水利设施拥挤效应测度模型的建立

    2.1.1 水利设施的拥挤效应

    某地区的水利设施(如防洪工程 、水保及生态环境建设工程、水资源工程等)对每个当地居民影响的加总可能并不等于整个水利设施所能带来的效用。在给定水利设施供给量的情况下,地区居民所能获得的水利设施服务水平在一定程度上决定于其使用者人数:如果人数超过了当地水利设施的承载力,那么居民可能需要排队等待,或者获得一个较低水平的服务。从这种意义上来说,水利设施具备“俱乐部”物品的性质,当使用这人数超过一定规模后,人均水利设施获得量小于其实际供给水平,这种现象被称作“拥挤效应”。

    第四,拥挤效应γ的估计结果亦可揭示,张光南和周华仙等[2]为避免基础设施拥挤性对其最优投资规模影响,将基础设施供给的人均量而非总量引入生产函数模型的做法是不恰当。因为这种做法暗含的假设条件实质是γ=-1,而这只是在理论上的一种可能值,并不一定是基础设施拥挤效应的实际值,所以,这种做法不一定能避免基础设施的拥挤性。

    (编辑:王爱萍)

    参考文献(References)

    [1]陕西省水利厅.陕西省水利发展“十二五”规划[R]. 西安:陕西省水利厅,2011. [Water Conservancy Department of Shaanxi Province. The 12th Fiveyear Plan of Shaanxi Water Conservancy Development [R]. Xian: Water Conservancy Department of Shaanxi Province, 2011.]

    [2]张光南, 周华仙, 陈广汉. 中国基础设施投资的最优规模与最优次序:基于1996-2008年各省市地区面板数据分析. 经济评论, 2011, (4): 23-30. [ Zhang Guangnan, Zhou Huaxian, Chen Guanghan. The Optimal Infrastructure Investment Scale and Order: Some Empirical Evidence from Panel Data in China [J]. Economic Review, 2011, (4): 23-30.]

    [3]马树才,孙长清. 经济增长与最优财政支出规模研究[J]. 统计研究, 2005, (1): 15-20. [Ma Shucai, Sun Changqing. Study on the Relationship Between Economic Growth and the Optimal Size of Fiscal Expenditure [J]. Statistical Research, 2005, (1):15-20.]

    [4]杨友才, 赖敏晖. 我国最优政府财政支出规模:基于门槛回归的分析[J]. 经济科学, 2009, (2): 34-44.[Yang Youcai, Lai Minhui. Study on the Optimal Size of China Fiscal Expenditure: an Analysis Based on Threshold Regression [J]. Economic Science, 2009, (2): 34-44.]

    [5]娄洪. 长期经济增长中的公共投资政策:包含一般拥挤性公共基础设施资本存量的动态经济增长模型[J]. 经济研究, 2004, (3): 10-19.[Lou Hong. Public Investment Policy in Longrun Economic Growth: General Congestion Public Infrastructure in Longrun Growth Model [J]. Economic Research Journal, 2004, (3): 10-19.]

    [6]刘小鲁. 区域性公共品的最优供给: 应用中国省际面板数据的分析[J]. 世界经济, 2008, (4):86-95. [Liu Xiaolu. The Optimal Provision of Regional Public Goods: Some Empirical Evidence from Panel Data in China [J]. The Journal of World Economy, 2008, (4): 86-95.]

    [7]钟正生, 饶晓辉. 我国存在最优政府规模曲线吗[J]. 财贸研究, 2006, (6): 44-48. [Zhong Zhengsheng, Rao Xiaohui. Does There Exist a Curve of Optimal Government Size [J]. Finance and Trade Research, 2006, (6): 44-48.]

    [8]张光南,李军.制度、最优政府规模与经济增长[J].统计研究,2008,(3):35-41.[Zhang Guangnan, Li Jun. Institutions, Optimal Government Size and Economic Growth[J]. Statistical Research,2008,(3):35-41.]

    [9]张治觉,侯奔,姚传飞.经济增长与政府支出的最优规模:基于国家效用函数的研究[J].统计研究,2007,22:42-44.[Zhang Zhijue, Hou Ben, Yao Chuanfei. Economic Growthand the Optimal Size of Fiscal Expenditure: A Study Based on National Utility Function[J]. Statistics and Decision,2007,22:35-41.]

    [10]罗植,杨冠琼.中国地方政府最优规模:三类模型的比较与检验[J].经济经纬,2013,(4):139-144.[Luo Zhi, Yang Guanqiong. The Model of Optimal Government Size in China: A Comparative and Empirical Study[J]. Economic Survey,2013,(4):139-144.]

    [11]何振国.中国财政支农支出的最优规模及其实现[J].中国农村经济,2006,(8):139-144.[He Zhenguo. The Optimal Scale of Chinas Fiscal Expenditure for Supporting Agriculture and Its Implementation[J]. Chinese Rural Economy,2006,(8):139-144.]

    [12]王增文.中国社会保障财政支出最优规模研究:基于财政的可持续性视角[J].农业技术经济,2010,(1):111-117.[Wang Zengwen. A Study on the Optimal Scale of Chinas Fiscal Expenditure for Social Insurance From the Perspective of Fiscal Sustainability[J]. Journal of Agrotechnical Economics,2010,(1):111-117.]

    [13]Goulder H, Parry W H, Williams C, et al. The Costeffectiveness of Alternative Instruments for Environmental Protection in a Secondbest Setting, Journal of Public Economics, 72 (3), June, 329-60[J]. International Library of Critical Writings in Economics, 2004, (1): 167-198.

    [14]Barro S, Ruiz R, Mira J. Multimicroprocessor System for Online Monitoring in a CCU[J]. Medical & Biological Engineering & Computing, 1990, (4): 339-349.

    [15]Barro R, SalaIMartin X. Convergence[J]. Journal of Economic Growth. 1992, 100(2): 223-251.

    [16]Borcherding T E, Deacon, et al. The Demand for the Services of Nonfederal Governments [J]. The American Economic Review, 1972, (5): 891-901.

    [17]Bergstrom T C, Goodman, et al. Private Demands for Public Goods[J]. American Economic Review, 1973, (3): 280-96.

    [18]Craig P. Resurfacing Full Thickness Burns of Scalp: The Crossword Technique [J]. Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery, 1987, (3): 257-259.

    [19]Ha F. An Analysis of the Optimal Provision of Public Infrastructure: A Computational Model Using Mexican Data [J]. Journal of Development Economics, 1999, (1): 219-230.

    [20]Guengant A, Josselin M, Rocaboy Y. Effects of Club Size in the Provision of Public Goods: Network and Congestion Effects in the Case of the French Municipalities[J]. Papers in Regional Science, 2002, 5(1): 443-460.

    [21]Inman R P. A Generalized Congestion Function for Highway Travel [J]. Journal of Urban Economics, 1978, 5(1): 21-34.

    [22]Karras G. On the Optimal Government Size in Europe: Theory and Empirical Evidence[J]. The Manchester School, 1997, 65(3): 280-294.

    [23]Kim E. Determinants of Optimal Level of Transportation Infrastructure [J]. Journal of Urban Planning and Development, 2002, (3): 150-163.

    [24]Hwang H, Lee N. Effect of Risk Aversion on the Incentive to Share Information[J]. International Economic Journal, 1992, (4): 423-439.

    [25]Linnemann L, Andreas S. Optimal Government Spending and Unemployment [A]. Tinbergen Institute Discussion Paper,2008, TI 2008-024 /2.

    [26]Reiter M, Weichenrieder A J. Public Goods, Club Goods, and the Measurement of Crowding [J]. Journal of Urban Economics, 1999, (1): 69-79.

    [27]Takahashi T. On the Optimal Policy of Infrastructure Provision Across Regions [J]. Regional Science and Urban Economics, 1998, (2): 213-235.

    [14]Barro S, Ruiz R, Mira J. Multimicroprocessor System for Online Monitoring in a CCU[J]. Medical & Biological Engineering & Computing, 1990, (4): 339-349.

    [15]Barro R, SalaIMartin X. Convergence[J]. Journal of Economic Growth. 1992, 100(2): 223-251.

    [16]Borcherding T E, Deacon, et al. The Demand for the Services of Nonfederal Governments [J]. The American Economic Review, 1972, (5): 891-901.

    [17]Bergstrom T C, Goodman, et al. Private Demands for Public Goods[J]. American Economic Review, 1973, (3): 280-96.

    [18]Craig P. Resurfacing Full Thickness Burns of Scalp: The Crossword Technique [J]. Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery, 1987, (3): 257-259.

    [19]Ha F. An Analysis of the Optimal Provision of Public Infrastructure: A Computational Model Using Mexican Data [J]. Journal of Development Economics, 1999, (1): 219-230.

    [20]Guengant A, Josselin M, Rocaboy Y. Effects of Club Size in the Provision of Public Goods: Network and Congestion Effects in the Case of the French Municipalities[J]. Papers in Regional Science, 2002, 5(1): 443-460.

    [21]Inman R P. A Generalized Congestion Function for Highway Travel [J]. Journal of Urban Economics, 1978, 5(1): 21-34.

    [22]Karras G. On the Optimal Government Size in Europe: Theory and Empirical Evidence[J]. The Manchester School, 1997, 65(3): 280-294.

    [23]Kim E. Determinants of Optimal Level of Transportation Infrastructure [J]. Journal of Urban Planning and Development, 2002, (3): 150-163.

    [24]Hwang H, Lee N. Effect of Risk Aversion on the Incentive to Share Information[J]. International Economic Journal, 1992, (4): 423-439.

    [25]Linnemann L, Andreas S. Optimal Government Spending and Unemployment [A]. Tinbergen Institute Discussion Paper,2008, TI 2008-024 /2.

    [26]Reiter M, Weichenrieder A J. Public Goods, Club Goods, and the Measurement of Crowding [J]. Journal of Urban Economics, 1999, (1): 69-79.

    [27]Takahashi T. On the Optimal Policy of Infrastructure Provision Across Regions [J]. Regional Science and Urban Economics, 1998, (2): 213-235.

    [14]Barro S, Ruiz R, Mira J. Multimicroprocessor System for Online Monitoring in a CCU[J]. Medical & Biological Engineering & Computing, 1990, (4): 339-349.

    [15]Barro R, SalaIMartin X. Convergence[J]. Journal of Economic Growth. 1992, 100(2): 223-251.

    [16]Borcherding T E, Deacon, et al. The Demand for the Services of Nonfederal Governments [J]. The American Economic Review, 1972, (5): 891-901.

    [17]Bergstrom T C, Goodman, et al. Private Demands for Public Goods[J]. American Economic Review, 1973, (3): 280-96.

    [18]Craig P. Resurfacing Full Thickness Burns of Scalp: The Crossword Technique [J]. Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery, 1987, (3): 257-259.

    [19]Ha F. An Analysis of the Optimal Provision of Public Infrastructure: A Computational Model Using Mexican Data [J]. Journal of Development Economics, 1999, (1): 219-230.

    [20]Guengant A, Josselin M, Rocaboy Y. Effects of Club Size in the Provision of Public Goods: Network and Congestion Effects in the Case of the French Municipalities[J]. Papers in Regional Science, 2002, 5(1): 443-460.

    [21]Inman R P. A Generalized Congestion Function for Highway Travel [J]. Journal of Urban Economics, 1978, 5(1): 21-34.

    [22]Karras G. On the Optimal Government Size in Europe: Theory and Empirical Evidence[J]. The Manchester School, 1997, 65(3): 280-294.

    [23]Kim E. Determinants of Optimal Level of Transportation Infrastructure [J]. Journal of Urban Planning and Development, 2002, (3): 150-163.

    [24]Hwang H, Lee N. Effect of Risk Aversion on the Incentive to Share Information[J]. International Economic Journal, 1992, (4): 423-439.

    [25]Linnemann L, Andreas S. Optimal Government Spending and Unemployment [A]. Tinbergen Institute Discussion Paper,2008, TI 2008-024 /2.

    [26]Reiter M, Weichenrieder A J. Public Goods, Club Goods, and the Measurement of Crowding [J]. Journal of Urban Economics, 1999, (1): 69-79.

    [27]Takahashi T. On the Optimal Policy of Infrastructure Provision Across Regions [J]. Regional Science and Urban Economics, 1998, (2): 213-235.

随便看

 

科学优质学术资源、百科知识分享平台,免费提供知识科普、生活经验分享、中外学术论文、各类范文、学术文献、教学资料、学术期刊、会议、报纸、杂志、工具书等各类资源检索、在线阅读和软件app下载服务。

 

Copyright © 2004-2023 puapp.net All Rights Reserved
更新时间:2024/12/22 20:56:35