互联网环境下大学数学教育教学实效性研究
摘?要:本文主要研究了互联网教育教学资源与传统教学模式的有效融合,优化大学数学课堂教学效果,利用优质教学资源,结合网络平台做好大学数学课堂教学设计,改变传统教育教学模式,提高教学效率。
关键词:大学数学;互联网环境;教学研究;教学资源
Abstract:this paper mainly studies the effective integration of Internet education and teaching resources with traditional teaching mode,optimizes the effect of college mathematics classroom teaching,makes use of high quality teaching resources,and combines the network platform to do a good job in the design of college mathematics classroom teaching.Change the traditional teaching mode and improve teaching efficiency.
Key words:University Mathematics;Internet Environment;Teaching Research;Teaching Resources
随着科技的发展,大学数学教学已逐渐打破传统的教育模式。我国各重点大学于2013年起已开始通过慕课平台进行网络在线教学,到目前为止,这种与互联网结合的教学模式也正在成为一种“新常态”。许多院校把部分教室改成了卫星和因特网连接的多媒体演播室,将网络延伸到了校园的各个角落。对于大学数学课程,如何有效地结合当前的网络资源及大学数学课程自身的特点进行合理的教学设计,从而改变以教师讲授为主到辅导为主的角色转变,提高学生自主学习能力和创新能力的是大学数学教育教学研究的一个重要课题。
一、当前大学数学教学的现状
在互联网迅速发展的今天,大学数学课程教学并没有将教师的主体地位转变过来。由于数学本身的逻辑性和抽象性,致使教授者认为只要教师教学生才能学得懂得思想植入脑中。传统的教学模式并没有多少改变,在整个的教学过程中,缺少课堂设计,缺少与其他专业领域的贯通、缺少新度。在教学中,对概念理论讲得深,致使学生听不懂,缺少了场景的代入,先理论后应用的方式,忽略了学生思考和问题式能力的培养,缺少了搭梯子的过程,也缺少了学生再学习能力的培养。目前,大多数学校的教师利用互联网教学的技术能力还没有达到教学要求。由于高校年龄偏大的教师已经形成了自己固有的教学经验和方法,对新型的互联网技术接受慢,不善于使用和搜索迭代更新的网络教学资源。现有的考核方式仍然延续传统的考核方式,并未真正细化考核方式,主动性和积极性缺乏,缺少教学能力的创新。
二、互联网环境下大学数学教育教学研究的必要性
(一)在互联网环境的背景下,对大学数学教学提出了更高的要求。
传统教育模式已滞后于现代教育的发展。陈旧的教学手段和保守的教学方法已严重影响了学生的个性化成长和发展,学生学习的积极性性和主动性难以激发,致使整个课堂教学效率和教学质量都很难提高,浪费了时间也浪费了教学资源。因此,要求教师必须更新教育观念,将网络资源融入到教学中,促进传统教学模式和网络教学模式的有效融合。教师要立足于教育的本质,结合当前教育教学资源,不断学习,培养学生自主学习能力和创新精神,激发学生的内在学习动力。当前,互联网教学模式已改变了很多教师对网络教学的认知。不受时间和空间限制的在线学习方式也是对传统大学数学教学方式的挑战,所以,如何有效地利用当前资源,把传统教学模式与网络资源结合起来教学,有针对性、有效性地开展网络资源模式下的不同形式的教学活动也是我们需要研究的一个重要课题。
(二)互联网环境有效促进了大学数学的金课建设工作
2018年11月,十一届中国大学教学论坛,吴岩司长作“建设中国金课”主题报告,阐述了什么是“水课”,什么是“金课”。如何“去水增金”,要求教育工作者要根据课程特点认真研究和思索。在互联网信息化如此飞速发展的时代,对金课建设工作提供了更多的思路和方向。大学数学可以利用互联网教学资源进行课程资源建设,充分利用好国家精品在线开放课程、国家精品视频公开课、国家精品资源共享课,实现教与学方法的创新。混合式课程资源建设,是信息化时代学校进行各项教育建设的突破点。大学数学课程作为基础学科,为后续课程起着至关重要的学科,探索其有效的教学模式是必要也是重要的。
(三)互联网环境下有效促进了教学方法的创新
将互联网引入到大学数学教学中,是因材施教的一种方式。信息化时代,网络资源如此发达,教师要为学生打开一扇窗,让学生从不同的角度和方式去学习。由于在校学生数学基础和学习习惯各不相同,采用相同的方式方法教学,会导致尖子学生学习欲望没有激发起来,基础薄弱的同学又感到很吃力,不利于人才的培養,所以可以利用网络上丰富的教学资源,利用对外免费开放的重点院校的优质教学资源,丰富教学内容,丰富网络课程,根据学生个性化方式教学,激发学生学习的内在动力。
三、互联网环境下大学数学教育教学研究的措施
(一)构建适合本校学生教育教学的网络平台
时代的发展,教师的教学也要与时俱进。由传统的一根粉笔就能完成整堂课教学的时代已经落伍了,所以教师必须更新观念,将现在教育教学手段应用到教学中。以长春光华学院为例,目前我们学校大部分课程都有自己的网络教学平台。数学课程是以学习通作为辅助教学平台的,在这个平台上可以将教学大纲、教案、课件、微课视频、作业、试题等资料上传到这个平台,学生们学习起来都很方便。教师可以通过这个平台进行作业、试卷的批改,同学们的学习情况通过这个平台都有所体现。去除了保守和机械的教学策略和教学方法,将信息化教学融入到课堂教学中,实现了传统教学模式与网络化教学模式之间的紧密结合。
(二)合理地利用优质教学资源
教师应该不断地学习,转变传统教学观念,根据学生的特点合理利用互联网教学资源,将重点院校精品课程的教学资源引入到教学中,可以将名校网络视频教学、名师微课、教学案例、数学实验等优质教学资源根据需求进行材料整合,引入到教学中,为学生的学习开阔视野,培养学生查资料独立学习的能力。教师也可以将网络课程中独立的知识点提炼出来做成相应的微视频或设置一些问题,为教学做补充。充分体现学生本位的教学本质,实现教师“教”是为了学生更好的“学”的目标转变。
(三)结合网络教学平台做好课堂教学设计
大学数学是逻辑性、抽象性比较强的学科,怎样上好这门课程,是需要教师认真思考的问题。要想上好这门课程即要有课程的整体设计,又要根据每堂课的教学内容做精确的教学设计。教师要依据教学大纲要求明确教学目标,同时对教学内容和学情进行分析,给出数学课堂教学的宏观设计。整个教学设计过程可以分为三个教学阶段:课前、课中、课后。课前为预习阶段,教师提前将教学课件、教学视频、在线测试上传到构建的网络平台,供学生们提前学习;课中为新课讲解阶段,教师将重点、难点等教学任务传授给学生,并进行问题讨论、评价;课后:回顾学习内容,进行学习反思、讨论交流。同时,教师每次课一定要进行教学反思,将教学中的问题记录下来,并对教学中的不足之处及时调整。教师还要上好每一堂课,每一堂课都要有微观的教学设计,根据本次课的教学内容,要给学生提供学生更容易接受的教学资源及视频,以三本学校学生为例,学生入学时数学基础比较薄弱,教师在选择视频资源时一定要让学生能容易接受,理论强的课程对于学习能力强并感兴趣的学生可以推荐学习。在课堂教学中,教师要根据本次课的教学内容提出相应的问题,最好与生活实际相关的例子,让同学们觉得数学就在身边,也可引入一些视频,让同学们觉得数学课堂不是枯燥的,从实际生活上升到理論的学习更能让学生们理解和接受,同时也达到创新能力培养的过程。在教学中还可以将好的数学实验演示视频给学生们观赏,让学生们感受到数学的魅力。课后也要留好学生讨论的问题,让学生能在课下也有再学习的过程。
(四)结合网络学习,做好评价体系
做好与网络资源结合的教学模式,合理科学的评价体系也是至关重要的。要将学生的在线网络学习数据做为平时成绩的一部分,调动学生主动学习、自主学习的积极性,同时培养学生的良好学习习惯。
四、互联网环境下大学数学教育教学研究的意义
互联网模式下的大学数学教育教学改变了传统教育模式,教师可以有效地利用网络优质教育资源,丰富课堂教学内容,活跃课堂氛围,改进教学内容和教学设计模式,以设计者的身份与学生平等对话,共同发展。同时拓宽了学生的视野,激发了学生学习的积极性和主动性,体现了以学生为中心的教育理念和教育本质。互联网模式下的大学数学教育教学研究优化了大学数学课堂教学效果,提高了大学数学教学效率。互联网模式下的教学推动了课程改革及素质教育的车轮,创造性地开辟了教学手段和教学策略之路,宏观角度辅助教师的教学及学校的发展,为学生营造了自由开放的教学氛围和学习氛围,鼓励了学生多边学习,实现自身的价值。
参考文献:
[1]袭杨,于辉,张丽,宋千红,田宏.基于MOOC构建大学数学混合式教学模式的研究[J].黑龙江科技信息,2016(33):140.
[2]陈甦甦.线上线下相结合的高职课堂教学实践与研究[J].现代职业教育,2019(32):98-99.
[3]杜秋霞.浅谈混合式教学在高等数学教学改革中的应用[J].发明与创新(职业教育),2020(07):68.
[4]倪雪华.基于微课的混合式教学在大学数学教学中的应用[J].产业与科技论坛,2019,18(20):154-155.
作者简介:闻学娟(1979—?),女,汉族,吉林德惠人,硕士,副教授,研究方向:偏微分方程。