基于石墨烯和金纳米笼修饰的无标记型微囊藻毒素免疫传感器的研制
杜华丽等
摘 要 利用石墨烯及中空结构的金纳米笼构建了无标记型电化学免疫传感器,并用于微囊藻毒素的检测。利用多元醇还原法合成制备了导电性好、催化性强、生物相容性好的金纳米笼;再利用高分散的石墨烯将其固定于玻碳电极表面,进一步吸附固定微囊藻毒素抗体。在无微囊藻毒素存在时,电化学探针
1 引 言
随着社会工业化的发展,水体富营养化现象日益加剧,引起蓝藻爆发,造成严重污染。在蓝藻大家族中,有一些种类会分泌较强的毒素——微囊藻毒素(Microcystins,MCs)。2 实验部分
2.1 仪器与试剂
差分脉冲伏安法(DPV)、循环伏安法(CV)和电化学交流阻抗(EIS)采用CHI 660D电化学工作站测量(上海辰华仪器有限公司);实验所用的三电极体系,用石墨烯和金纳米笼修饰过的玻碳电极为工作电极,铂电极为对电极,饱和甘汞电极(SCE)为参比电极;透射电镜图在JEM2100透射电镜仪上获得(200 kV,日本电子株式会社)。TGL16离心机(长沙湘智离心机厂),ST2200HP超声波清洗器(上海科导超声仪器有限公司)。
4 结 论 利用二元醇还原法合成金纳米笼,基于石墨烯的巨大比表面积和金纳米笼的独特笼状结构和良好的导电性,利用高分散的石墨烯将金纳米笼固定于玻碳电极表面,并进一步固定微囊藻毒素抗体构建了无标记型免疫传感器,利用电化学探针[Fe(CN)6]3Symbolm@@ /4Symbolm@@ 实现对微囊藻毒素灵敏快速检测。实验结果表明,石墨烯和金纳米笼修饰电极具有灵敏度高,选择性良好,检测下限低等优点。此传感器制备操作简单,稳定性好。
References
1 FANG YanFen, CHEN DengXia, HUANG YingPing. YANG Jing, CHENG GengWei. Chinese J. Anal. Chem., 2011, 39(4): 540-543
方艳芬, 陈登霞, 黄应平, 杨 静, 程根伟. 分析化学, 2011, 39(4): 540-543
2 HU ZhiJian, CHEN Hua, SUN ChangSheng. Chinese J. Preventive Med., 2002, 36(4): 239-242
胡志坚, 陈 华, 孙昌盛. 中华预防医学, 2002, 36(4): 239-242
3 YU ShunZhang, ZHAO Ning, ZI XiaoLin. Chin. J. Oncol., 2001, 23(2): 96-99
俞顺章, 赵 宁,资小林. 中华肿瘤杂志, 2001, 23(2): 96-99
4 Ito E, Takai A, Kondo F. Toxicon., 2002, 40(7): 1017-1025
5 Dowson R M. Toxicon, 1998, 36(7): 953-962
6 Harada K. J. Health Sci, 1999, 45(3): 150-165
7 CAI JinBang, LI WenQi, FENG Yong, YANG XuGuang. J. Hydraulic Eng., 2009, 40(3): 328-334
蔡金傍, 李文奇, 逢 勇, 杨旭光. 水利工程, 2009, 40(3): 328-334
8 Wei T. Separation, Analysis and Preparation of Microcystins. A Dissertation of Southeast University in China. 2005
9 ZHOU Lun, SHEN GaoFei. Chin. J. Preventive Med., 2000, 34(4): 224-226
周 伦, 沈高飞. 中华预防医学杂志, 2000, 34(4): 224-226
10 Gupta N, Pant S C, Vijayaraghavan R, Lakshmana R P V. Toxicol., 2003, 188 (23): 285-296
11 WANG Chao, PENG Tao, L YiBing, TENG EnJiang. Chinese J. Anal. Chem., 2013, 41(12): 1844-1850
王 超, 彭 涛, 吕怡兵, 滕恩江. 分析化学, 2013, 41(12): 1844-1850
12 Moollan R. W, Rae B, Verbeek A. Analyst, 1996, 121(2): 233-238
13 LI YanWen, HUANG XianPei, WU XiaoLian, XIANG Lei, ZHAN XiaoJing, LI ZiJun, WEN HongFei, ZHONG FangLong, MO CeHui, HONG AiHua. Chinese J. Anal. Chem., 2013, 41(1): 88-92
李彦文, 黄献培,吴小莲,向 垒,詹晓静,李梓君,温宏飞,钟方龙,莫测辉, 洪爱华. 分析化学 , 2013, 41(1): 88-92
14 HE XiaoWei, GUO QiuHua,PENG YunPing. J. Hygiene Res., 2007, 36(3): 388-390
何小维, 郭秋华, 彭运平. 卫生研究, 2007, 36(3): 388-390
15 SHAO Peng, LIU Rui, CHEN LüJun. Environ. Pollut. Control, 2009, 31(5): 25-30
邵 鹏, 刘 锐, 陈吕军. 环境污染与防治, 2009, 31(5): 25-30
16 Vinogradova T, Danaher M, Baxter A, Moloney M, Victory D, Haughey S A. Talanta, 2011, 84 (3): 638-643
17 Zhang J, Lei J P, Xu C L, Ding L, Ju H X. Anal. Chem., 2010, 82(3): 1117-1122
18 Cheng X Q, He M, Shi H C, Cai Q. Anal. Chem., 2011, 39(4): 443-448
19 SUN XiuLan, SHI Hui, ZHANG YinZhi. Chin. J. Cell. Mol.Immunol., 2010, 26(8): 813-815
孙秀兰, 石 慧, 张银志. 细胞与分子免疫学杂志, 2010, 26(8): 813-815
20 Dawan S, Kanatharana P, Wongkittisuks B. Anal. Chim. Acta, 2011, 699(2): 232-241
21 Cobley C M, Campbell D J, Xia Y N. Adv. Mater, 2008, 20(4): 748-752
22 Skrabalak S E, Chen J, Xia Y N. Adv. Mater, 2007, 19(20): 3177-3184
23 HUANG Yi, CHEN YongSheng. Science in China Series B: Chem., 2009, 39(9): 887- 896
黄 毅, 陈永胜. 中国科学B辑: 化学, 2009, 39(9): 887-896
24 Guo H L, Wang X. F, Qian Q Y. ACS. Nano, 2009, 3(9): 2653-2659
A Labelfree Immunosensor for MicrocystinsLR Based on
Graphene and Gold Nanocage
DU HuaLi, FU XueWen, WEN YongPing, QIU ZeJun, XIONG LiMei, HONG NianZhang, YANG YunHui*
(College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China)
Abstract A labelfree electrochemical immunosensor using hollow structure nanomaterials based on its ordered porous and big surface area was designed. Au nanocage, with good conductivity, catalysis, and biocompatibility, was prepared and modified on the surface of glassy carbon electrode with graphene to immobilize antibody of microcystin directly. In the absence of microcystin, biosensor can obtain high current response signal of electrochemical probe ([Fe(CN)6]3Symbolm@@ /4Symbolm@@ . When microcystin was combined with its antibody specifically, the charge density and mass transfer resistance on the surface of electrode increased, resulting in a decrease of the corresponding peak current of [Fe(CN)6]3Symbolm@@ /4Symbolm@@ . This change was in proportion to the concentration of microcystin indirectly. Experiment conditions such as cultivation time of antigen and concentration of antibody were optimized. The results showed wide linear range of 0.05 μg/L-1.0 mg/L and the detection limit of 0.017 ng/mL. This sensor has good stability and simple production procedure. This sensor provides a new and simple means for the ultrasensitive determination of microcystins in real water samples.
Keywords Microcystin; Graphene; Gold nanocage; Labelfree immunosensor
(Received 10 July 2013; accepted 3 December 2013)
This work was supported the National Natural Science Foundation of China (No.21165023)
15 SHAO Peng, LIU Rui, CHEN LüJun. Environ. Pollut. Control, 2009, 31(5): 25-30
邵 鹏, 刘 锐, 陈吕军. 环境污染与防治, 2009, 31(5): 25-30
16 Vinogradova T, Danaher M, Baxter A, Moloney M, Victory D, Haughey S A. Talanta, 2011, 84 (3): 638-643
17 Zhang J, Lei J P, Xu C L, Ding L, Ju H X. Anal. Chem., 2010, 82(3): 1117-1122
18 Cheng X Q, He M, Shi H C, Cai Q. Anal. Chem., 2011, 39(4): 443-448
19 SUN XiuLan, SHI Hui, ZHANG YinZhi. Chin. J. Cell. Mol.Immunol., 2010, 26(8): 813-815
孙秀兰, 石 慧, 张银志. 细胞与分子免疫学杂志, 2010, 26(8): 813-815
20 Dawan S, Kanatharana P, Wongkittisuks B. Anal. Chim. Acta, 2011, 699(2): 232-241
21 Cobley C M, Campbell D J, Xia Y N. Adv. Mater, 2008, 20(4): 748-752
22 Skrabalak S E, Chen J, Xia Y N. Adv. Mater, 2007, 19(20): 3177-3184
23 HUANG Yi, CHEN YongSheng. Science in China Series B: Chem., 2009, 39(9): 887- 896
黄 毅, 陈永胜. 中国科学B辑: 化学, 2009, 39(9): 887-896
24 Guo H L, Wang X. F, Qian Q Y. ACS. Nano, 2009, 3(9): 2653-2659
A Labelfree Immunosensor for MicrocystinsLR Based on
Graphene and Gold Nanocage
DU HuaLi, FU XueWen, WEN YongPing, QIU ZeJun, XIONG LiMei, HONG NianZhang, YANG YunHui*
(College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China)
Abstract A labelfree electrochemical immunosensor using hollow structure nanomaterials based on its ordered porous and big surface area was designed. Au nanocage, with good conductivity, catalysis, and biocompatibility, was prepared and modified on the surface of glassy carbon electrode with graphene to immobilize antibody of microcystin directly. In the absence of microcystin, biosensor can obtain high current response signal of electrochemical probe ([Fe(CN)6]3Symbolm@@ /4Symbolm@@ . When microcystin was combined with its antibody specifically, the charge density and mass transfer resistance on the surface of electrode increased, resulting in a decrease of the corresponding peak current of [Fe(CN)6]3Symbolm@@ /4Symbolm@@ . This change was in proportion to the concentration of microcystin indirectly. Experiment conditions such as cultivation time of antigen and concentration of antibody were optimized. The results showed wide linear range of 0.05 μg/L-1.0 mg/L and the detection limit of 0.017 ng/mL. This sensor has good stability and simple production procedure. This sensor provides a new and simple means for the ultrasensitive determination of microcystins in real water samples.
Keywords Microcystin; Graphene; Gold nanocage; Labelfree immunosensor
(Received 10 July 2013; accepted 3 December 2013)
This work was supported the National Natural Science Foundation of China (No.21165023)
15 SHAO Peng, LIU Rui, CHEN LüJun. Environ. Pollut. Control, 2009, 31(5): 25-30
邵 鹏, 刘 锐, 陈吕军. 环境污染与防治, 2009, 31(5): 25-30
16 Vinogradova T, Danaher M, Baxter A, Moloney M, Victory D, Haughey S A. Talanta, 2011, 84 (3): 638-643
17 Zhang J, Lei J P, Xu C L, Ding L, Ju H X. Anal. Chem., 2010, 82(3): 1117-1122
18 Cheng X Q, He M, Shi H C, Cai Q. Anal. Chem., 2011, 39(4): 443-448
19 SUN XiuLan, SHI Hui, ZHANG YinZhi. Chin. J. Cell. Mol.Immunol., 2010, 26(8): 813-815
孙秀兰, 石 慧, 张银志. 细胞与分子免疫学杂志, 2010, 26(8): 813-815
20 Dawan S, Kanatharana P, Wongkittisuks B. Anal. Chim. Acta, 2011, 699(2): 232-241
21 Cobley C M, Campbell D J, Xia Y N. Adv. Mater, 2008, 20(4): 748-752
22 Skrabalak S E, Chen J, Xia Y N. Adv. Mater, 2007, 19(20): 3177-3184
23 HUANG Yi, CHEN YongSheng. Science in China Series B: Chem., 2009, 39(9): 887- 896
黄 毅, 陈永胜. 中国科学B辑: 化学, 2009, 39(9): 887-896
24 Guo H L, Wang X. F, Qian Q Y. ACS. Nano, 2009, 3(9): 2653-2659
A Labelfree Immunosensor for MicrocystinsLR Based on
Graphene and Gold Nanocage
DU HuaLi, FU XueWen, WEN YongPing, QIU ZeJun, XIONG LiMei, HONG NianZhang, YANG YunHui*
(College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China)
Abstract A labelfree electrochemical immunosensor using hollow structure nanomaterials based on its ordered porous and big surface area was designed. Au nanocage, with good conductivity, catalysis, and biocompatibility, was prepared and modified on the surface of glassy carbon electrode with graphene to immobilize antibody of microcystin directly. In the absence of microcystin, biosensor can obtain high current response signal of electrochemical probe ([Fe(CN)6]3Symbolm@@ /4Symbolm@@ . When microcystin was combined with its antibody specifically, the charge density and mass transfer resistance on the surface of electrode increased, resulting in a decrease of the corresponding peak current of [Fe(CN)6]3Symbolm@@ /4Symbolm@@ . This change was in proportion to the concentration of microcystin indirectly. Experiment conditions such as cultivation time of antigen and concentration of antibody were optimized. The results showed wide linear range of 0.05 μg/L-1.0 mg/L and the detection limit of 0.017 ng/mL. This sensor has good stability and simple production procedure. This sensor provides a new and simple means for the ultrasensitive determination of microcystins in real water samples.
Keywords Microcystin; Graphene; Gold nanocage; Labelfree immunosensor
(Received 10 July 2013; accepted 3 December 2013)
This work was supported the National Natural Science Foundation of China (No.21165023)
摘 要 利用石墨烯及中空结构的金纳米笼构建了无标记型电化学免疫传感器,并用于微囊藻毒素的检测。利用多元醇还原法合成制备了导电性好、催化性强、生物相容性好的金纳米笼;再利用高分散的石墨烯将其固定于玻碳电极表面,进一步吸附固定微囊藻毒素抗体。在无微囊藻毒素存在时,电化学探针
1 引 言
随着社会工业化的发展,水体富营养化现象日益加剧,引起蓝藻爆发,造成严重污染。在蓝藻大家族中,有一些种类会分泌较强的毒素——微囊藻毒素(Microcystins,MCs)。2 实验部分
2.1 仪器与试剂
差分脉冲伏安法(DPV)、循环伏安法(CV)和电化学交流阻抗(EIS)采用CHI 660D电化学工作站测量(上海辰华仪器有限公司);实验所用的三电极体系,用石墨烯和金纳米笼修饰过的玻碳电极为工作电极,铂电极为对电极,饱和甘汞电极(SCE)为参比电极;透射电镜图在JEM2100透射电镜仪上获得(200 kV,日本电子株式会社)。TGL16离心机(长沙湘智离心机厂),ST2200HP超声波清洗器(上海科导超声仪器有限公司)。
4 结 论 利用二元醇还原法合成金纳米笼,基于石墨烯的巨大比表面积和金纳米笼的独特笼状结构和良好的导电性,利用高分散的石墨烯将金纳米笼固定于玻碳电极表面,并进一步固定微囊藻毒素抗体构建了无标记型免疫传感器,利用电化学探针[Fe(CN)6]3Symbolm@@ /4Symbolm@@ 实现对微囊藻毒素灵敏快速检测。实验结果表明,石墨烯和金纳米笼修饰电极具有灵敏度高,选择性良好,检测下限低等优点。此传感器制备操作简单,稳定性好。
References
1 FANG YanFen, CHEN DengXia, HUANG YingPing. YANG Jing, CHENG GengWei. Chinese J. Anal. Chem., 2011, 39(4): 540-543
方艳芬, 陈登霞, 黄应平, 杨 静, 程根伟. 分析化学, 2011, 39(4): 540-543
2 HU ZhiJian, CHEN Hua, SUN ChangSheng. Chinese J. Preventive Med., 2002, 36(4): 239-242
胡志坚, 陈 华, 孙昌盛. 中华预防医学, 2002, 36(4): 239-242
3 YU ShunZhang, ZHAO Ning, ZI XiaoLin. Chin. J. Oncol., 2001, 23(2): 96-99
俞顺章, 赵 宁,资小林. 中华肿瘤杂志, 2001, 23(2): 96-99
4 Ito E, Takai A, Kondo F. Toxicon., 2002, 40(7): 1017-1025
5 Dowson R M. Toxicon, 1998, 36(7): 953-962
6 Harada K. J. Health Sci, 1999, 45(3): 150-165
7 CAI JinBang, LI WenQi, FENG Yong, YANG XuGuang. J. Hydraulic Eng., 2009, 40(3): 328-334
蔡金傍, 李文奇, 逢 勇, 杨旭光. 水利工程, 2009, 40(3): 328-334
8 Wei T. Separation, Analysis and Preparation of Microcystins. A Dissertation of Southeast University in China. 2005
9 ZHOU Lun, SHEN GaoFei. Chin. J. Preventive Med., 2000, 34(4): 224-226
周 伦, 沈高飞. 中华预防医学杂志, 2000, 34(4): 224-226
10 Gupta N, Pant S C, Vijayaraghavan R, Lakshmana R P V. Toxicol., 2003, 188 (23): 285-296
11 WANG Chao, PENG Tao, L YiBing, TENG EnJiang. Chinese J. Anal. Chem., 2013, 41(12): 1844-1850
王 超, 彭 涛, 吕怡兵, 滕恩江. 分析化学, 2013, 41(12): 1844-1850
12 Moollan R. W, Rae B, Verbeek A. Analyst, 1996, 121(2): 233-238
13 LI YanWen, HUANG XianPei, WU XiaoLian, XIANG Lei, ZHAN XiaoJing, LI ZiJun, WEN HongFei, ZHONG FangLong, MO CeHui, HONG AiHua. Chinese J. Anal. Chem., 2013, 41(1): 88-92
李彦文, 黄献培,吴小莲,向 垒,詹晓静,李梓君,温宏飞,钟方龙,莫测辉, 洪爱华. 分析化学 , 2013, 41(1): 88-92
14 HE XiaoWei, GUO QiuHua,PENG YunPing. J. Hygiene Res., 2007, 36(3): 388-390
何小维, 郭秋华, 彭运平. 卫生研究, 2007, 36(3): 388-390
15 SHAO Peng, LIU Rui, CHEN LüJun. Environ. Pollut. Control, 2009, 31(5): 25-30
邵 鹏, 刘 锐, 陈吕军. 环境污染与防治, 2009, 31(5): 25-30
16 Vinogradova T, Danaher M, Baxter A, Moloney M, Victory D, Haughey S A. Talanta, 2011, 84 (3): 638-643
17 Zhang J, Lei J P, Xu C L, Ding L, Ju H X. Anal. Chem., 2010, 82(3): 1117-1122
18 Cheng X Q, He M, Shi H C, Cai Q. Anal. Chem., 2011, 39(4): 443-448
19 SUN XiuLan, SHI Hui, ZHANG YinZhi. Chin. J. Cell. Mol.Immunol., 2010, 26(8): 813-815
孙秀兰, 石 慧, 张银志. 细胞与分子免疫学杂志, 2010, 26(8): 813-815
20 Dawan S, Kanatharana P, Wongkittisuks B. Anal. Chim. Acta, 2011, 699(2): 232-241
21 Cobley C M, Campbell D J, Xia Y N. Adv. Mater, 2008, 20(4): 748-752
22 Skrabalak S E, Chen J, Xia Y N. Adv. Mater, 2007, 19(20): 3177-3184
23 HUANG Yi, CHEN YongSheng. Science in China Series B: Chem., 2009, 39(9): 887- 896
黄 毅, 陈永胜. 中国科学B辑: 化学, 2009, 39(9): 887-896
24 Guo H L, Wang X. F, Qian Q Y. ACS. Nano, 2009, 3(9): 2653-2659
A Labelfree Immunosensor for MicrocystinsLR Based on
Graphene and Gold Nanocage
DU HuaLi, FU XueWen, WEN YongPing, QIU ZeJun, XIONG LiMei, HONG NianZhang, YANG YunHui*
(College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China)
Abstract A labelfree electrochemical immunosensor using hollow structure nanomaterials based on its ordered porous and big surface area was designed. Au nanocage, with good conductivity, catalysis, and biocompatibility, was prepared and modified on the surface of glassy carbon electrode with graphene to immobilize antibody of microcystin directly. In the absence of microcystin, biosensor can obtain high current response signal of electrochemical probe ([Fe(CN)6]3Symbolm@@ /4Symbolm@@ . When microcystin was combined with its antibody specifically, the charge density and mass transfer resistance on the surface of electrode increased, resulting in a decrease of the corresponding peak current of [Fe(CN)6]3Symbolm@@ /4Symbolm@@ . This change was in proportion to the concentration of microcystin indirectly. Experiment conditions such as cultivation time of antigen and concentration of antibody were optimized. The results showed wide linear range of 0.05 μg/L-1.0 mg/L and the detection limit of 0.017 ng/mL. This sensor has good stability and simple production procedure. This sensor provides a new and simple means for the ultrasensitive determination of microcystins in real water samples.
Keywords Microcystin; Graphene; Gold nanocage; Labelfree immunosensor
(Received 10 July 2013; accepted 3 December 2013)
This work was supported the National Natural Science Foundation of China (No.21165023)
15 SHAO Peng, LIU Rui, CHEN LüJun. Environ. Pollut. Control, 2009, 31(5): 25-30
邵 鹏, 刘 锐, 陈吕军. 环境污染与防治, 2009, 31(5): 25-30
16 Vinogradova T, Danaher M, Baxter A, Moloney M, Victory D, Haughey S A. Talanta, 2011, 84 (3): 638-643
17 Zhang J, Lei J P, Xu C L, Ding L, Ju H X. Anal. Chem., 2010, 82(3): 1117-1122
18 Cheng X Q, He M, Shi H C, Cai Q. Anal. Chem., 2011, 39(4): 443-448
19 SUN XiuLan, SHI Hui, ZHANG YinZhi. Chin. J. Cell. Mol.Immunol., 2010, 26(8): 813-815
孙秀兰, 石 慧, 张银志. 细胞与分子免疫学杂志, 2010, 26(8): 813-815
20 Dawan S, Kanatharana P, Wongkittisuks B. Anal. Chim. Acta, 2011, 699(2): 232-241
21 Cobley C M, Campbell D J, Xia Y N. Adv. Mater, 2008, 20(4): 748-752
22 Skrabalak S E, Chen J, Xia Y N. Adv. Mater, 2007, 19(20): 3177-3184
23 HUANG Yi, CHEN YongSheng. Science in China Series B: Chem., 2009, 39(9): 887- 896
黄 毅, 陈永胜. 中国科学B辑: 化学, 2009, 39(9): 887-896
24 Guo H L, Wang X. F, Qian Q Y. ACS. Nano, 2009, 3(9): 2653-2659
A Labelfree Immunosensor for MicrocystinsLR Based on
Graphene and Gold Nanocage
DU HuaLi, FU XueWen, WEN YongPing, QIU ZeJun, XIONG LiMei, HONG NianZhang, YANG YunHui*
(College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China)
Abstract A labelfree electrochemical immunosensor using hollow structure nanomaterials based on its ordered porous and big surface area was designed. Au nanocage, with good conductivity, catalysis, and biocompatibility, was prepared and modified on the surface of glassy carbon electrode with graphene to immobilize antibody of microcystin directly. In the absence of microcystin, biosensor can obtain high current response signal of electrochemical probe ([Fe(CN)6]3Symbolm@@ /4Symbolm@@ . When microcystin was combined with its antibody specifically, the charge density and mass transfer resistance on the surface of electrode increased, resulting in a decrease of the corresponding peak current of [Fe(CN)6]3Symbolm@@ /4Symbolm@@ . This change was in proportion to the concentration of microcystin indirectly. Experiment conditions such as cultivation time of antigen and concentration of antibody were optimized. The results showed wide linear range of 0.05 μg/L-1.0 mg/L and the detection limit of 0.017 ng/mL. This sensor has good stability and simple production procedure. This sensor provides a new and simple means for the ultrasensitive determination of microcystins in real water samples.
Keywords Microcystin; Graphene; Gold nanocage; Labelfree immunosensor
(Received 10 July 2013; accepted 3 December 2013)
This work was supported the National Natural Science Foundation of China (No.21165023)
15 SHAO Peng, LIU Rui, CHEN LüJun. Environ. Pollut. Control, 2009, 31(5): 25-30
邵 鹏, 刘 锐, 陈吕军. 环境污染与防治, 2009, 31(5): 25-30
16 Vinogradova T, Danaher M, Baxter A, Moloney M, Victory D, Haughey S A. Talanta, 2011, 84 (3): 638-643
17 Zhang J, Lei J P, Xu C L, Ding L, Ju H X. Anal. Chem., 2010, 82(3): 1117-1122
18 Cheng X Q, He M, Shi H C, Cai Q. Anal. Chem., 2011, 39(4): 443-448
19 SUN XiuLan, SHI Hui, ZHANG YinZhi. Chin. J. Cell. Mol.Immunol., 2010, 26(8): 813-815
孙秀兰, 石 慧, 张银志. 细胞与分子免疫学杂志, 2010, 26(8): 813-815
20 Dawan S, Kanatharana P, Wongkittisuks B. Anal. Chim. Acta, 2011, 699(2): 232-241
21 Cobley C M, Campbell D J, Xia Y N. Adv. Mater, 2008, 20(4): 748-752
22 Skrabalak S E, Chen J, Xia Y N. Adv. Mater, 2007, 19(20): 3177-3184
23 HUANG Yi, CHEN YongSheng. Science in China Series B: Chem., 2009, 39(9): 887- 896
黄 毅, 陈永胜. 中国科学B辑: 化学, 2009, 39(9): 887-896
24 Guo H L, Wang X. F, Qian Q Y. ACS. Nano, 2009, 3(9): 2653-2659
A Labelfree Immunosensor for MicrocystinsLR Based on
Graphene and Gold Nanocage
DU HuaLi, FU XueWen, WEN YongPing, QIU ZeJun, XIONG LiMei, HONG NianZhang, YANG YunHui*
(College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China)
Abstract A labelfree electrochemical immunosensor using hollow structure nanomaterials based on its ordered porous and big surface area was designed. Au nanocage, with good conductivity, catalysis, and biocompatibility, was prepared and modified on the surface of glassy carbon electrode with graphene to immobilize antibody of microcystin directly. In the absence of microcystin, biosensor can obtain high current response signal of electrochemical probe ([Fe(CN)6]3Symbolm@@ /4Symbolm@@ . When microcystin was combined with its antibody specifically, the charge density and mass transfer resistance on the surface of electrode increased, resulting in a decrease of the corresponding peak current of [Fe(CN)6]3Symbolm@@ /4Symbolm@@ . This change was in proportion to the concentration of microcystin indirectly. Experiment conditions such as cultivation time of antigen and concentration of antibody were optimized. The results showed wide linear range of 0.05 μg/L-1.0 mg/L and the detection limit of 0.017 ng/mL. This sensor has good stability and simple production procedure. This sensor provides a new and simple means for the ultrasensitive determination of microcystins in real water samples.
Keywords Microcystin; Graphene; Gold nanocage; Labelfree immunosensor
(Received 10 July 2013; accepted 3 December 2013)
This work was supported the National Natural Science Foundation of China (No.21165023)