绿洲盐化潮土区典型缺锌玉米根际和非根际土壤锌形态差异
王成宝 霍琳 杨思存 温美娟 姜万礼 黄涛
摘要:以绿洲盐化潮土为研究对象,通过采集6叶期典型缺锌玉米及其相邻正常玉米根际、非根际土壤和植株样品,研究了不同类别土壤锌形态特征和不同类型植株含锌量、吸锌量及土壤鋅素从根系向地上部转运的差异及植株含锌量、吸锌量及土壤锌素转运率与各形态锌的相关性。结果表明,绿洲盐化潮土全锌含量平均为97.12 mg/kg,缺锌植株与正常植株、根际土壤与非根际之间都没有显著差异;土壤有效锌含量平均为0.60 mg/kg,高于北方石灰性土壤缺锌临界值(0.50 mg/kg),缺锌植株根际土壤有效锌含量比正常植株根际土壤低42.70%,达到极显著差异水平。残留矿物态是绿洲盐化潮土最主要的锌形态,占全锌含量的79.43%;其次是晶形铁结合态、无定形铁结合态和松结有机态。交换态、碳酸盐结合态、松结有机态、氧化锰结合态锌含量均为根际土壤显著高于非根际土壤,正常植株显著高于缺锌植株。缺锌玉米茎叶含锌量只有14.64 mg/kg,低于玉米缺锌临界值(20 mg/kg),比正常植株低52.30%,吸锌量比正常植株低66.52%,锌素转运率比正常植株低将近10百分点,这是绿洲盐化潮土上玉米缺锌的一个重要机制。玉米茎叶含锌量与Ex-Zn、CAB-Zn含量呈极显著正相关;茎叶吸锌量与WBO-Zn、OxMn-Zn、DTPA-Zn含量呈极显著正相关,与AOFe-Zn含量呈显著负相关;土壤锌素转运率与DTPA-Zn、CAB-Zn、WBO-Zn、OxMn-Zn含量呈显著正相关,与AOFe-Zn含量呈显著负相关。
关键词:绿洲盐化潮土;缺锌;玉米;根际;锌形态;锌含量
中图分类号:S156.4 ? ? ?文献标志码:A ? ? ?文章编号:1001-1463(2020)06-0022-07
doi:10.3969/j.issn.1001-1463.2020.06.007
Differences of Zn Fraction Between Rhizosphere and Bulk Soil of Zn-deficient Corn ?in Saline Fluvo-aquic Soil Areas
WANG Chengbao, HUO Lin, YANG Sicun, WEN Meijuan, JIANG Wanli, HUANG Tao
(Institute of Soil, Fertilizer and Water-saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou Gansu 730070, China)
Abstract:Taking the saline fluvo-aquic soil area of Hexi Oasis as research object, rhizosphere and bulk soil and plant samples of typical Zn-deficient corn and its adjacent normal corn with 6 leaves were collected, studied the differences of Zn fraction characteristics in different types of soil and Zn concentrations, uptakes and transported ratio in different types of corn, the difference of zinc uptake and soil zinc transport from root to overground, and the amount of zinc in plants, as well as the correlations between plant Zn concentrations,uptakes, Zn transported ratio and Zn fractions were discussed in this paper. The results showed that total Zn content with an average of 97.12 mg/kg in saline fluvo-aquic soil,and had no significant difference between Zn-deficient and normal plants, also between rhizosphere and bulk soil. Available Zn content with an average of 0.60 mg/kg, which was below the deficiency level (DTPA-Zn < 0.50 mg/kg) in calcareous soil in northern China. Meanwhile, the available Zn contents in rhizosphere of Zn-deficient plant were 42.70% lower than normal plant extremely significant. Residual minerals were the main Zn form in saline fluvo-aquic soil, it accounted for 79.43% of total Zn, and followed by crystalline Fe oxides, amorphous Fe oxides and loose bound to organic matter. The Zn contents in rhizosphere soil of exchangeable form, bound to carbonates, loose bound to organic matter and bound to Mn oxides were all significantly higher than bulk soil, normal plant significantly higher than Zn-deficient plant. The shoot Zn concentration of Zn-deficient plant was only 14.64 mg/kg, which was below the critical value of Zn deficiency(20 mg/kg), and 52.30% lower than that of normal corn. Meanwhile, the uptake of Zn-deficient plant was 66.52% lower and Zn transported ratio was nearly 10 percentage points lower than that of normal corn. This may be an important mechanism of Zn deficiency in corn in saline fluvo-aquic soil. The shoot Zn concentrations were positively correlated with Ex-Zn and CAB-Zn. The shoot Zn uptakes were positively correlated with WBO-Zn, OxMn-Zn and DTPA-Zn, and negatively correlated with AOFe-Zn contents. The Zn transported ratios were positively correlated with DTPA-Zn, CAB-Zn,WBO-Zn and OxMn-Zn, and negatively correlated with AOFe-Zn contents.
2.2 ? 土壤锌形态
从图2可以看出,RES-Zn是绿洲盐化潮土区最主要的锌形态,平均含量77.111 mg/kg,占全锌含量的79.43%;其次为COFe-Zn,平均含量为11.701 mg/kg,占全锌含量的12.05%;AOFe-Zn居第3,平均含量5.054 mg/kg,占全锌含量的5.21%;WBO-Zn居第4,平均含量1.192 mg/kg,占全锌含量的1.23%;CAB-Zn、OxMn-Zn、SBO-Zn含量相差不多,为0.653~0.700 mg/kg,约占全锌含量的0.70%;Ex-Zn含量为痕迹。
2.3 ? 植株含锌量、 吸锌量及土壤锌素从根系向地上部转运的差异
2.3.1 ? ?植株含锌量和吸收量 ? ?从表1可以看出,不管是茎叶还是根系,缺锌植株的含锌量都显著低于正常植株。缺锌植株茎叶含锌量只有14.64 mg/kg,比正常植株降低52.30%;缺锌植株根系含锌量为69.00 mg/kg,比正常植株低17.36%。从降低的幅度也可以看出,根系明显低于茎叶,这一方面与茎叶和根系对锌吸收能力的不同有关,另一方面也可能与锌的转运受阻有关。从玉米吸锌量来看,表现出了與含锌量相同的趋势,缺锌植株茎叶吸锌量比正常植株低66.52%,根系吸锌量比正常植株低了49.27%。
2.3.2 ? ?土壤锌素从根系向地上部的转运 ? ? Rengel等[15 ]将养分转运率定义为植株地上部养分吸收量与整株吸收量的比值。在本研究中,我们对不同植株的Zn转运情况进行了分析。从表1可以看出,缺锌植株的锌素转运率只有34.08%,而正常植株达到了43.92%,高出了近10百分点,对含锌量和吸锌量的分析也有相同的结论,这可能也是缺锌植株表现出缺锌症状的主要原因。
2.4 ? 植株含锌量、吸锌量及土壤锌素转运率与各形态锌的相关性
相关分析结果(表2)表明,土壤中Total-Zn与Ex-Zn、CAB-Zn、WBO-Zn、OxMn-
Zn、COFe-Zn和RES-Zn含量呈正相关关系,与SBO-Zn、AOFe-Zn含量呈负相关关系,但差异均达不到显著水平;DTPA-Zn与CAB-Zn和OxMn-Zn含量呈显著正相关,与Ex-Zn、WBO-Zn、SBO-Zn、COFe-Zn、Total-Zn含量呈正相关关系,与AOFe-Zn、RES-Zn含量呈负相关关系;CAB-Zn与OxMn-Zn含量呈极显著正相关关系;WBO-Zn与OxMn-Zn含量呈极显著正相关关系,与AOFe-Zn含量呈极显著负相关关系;Ex-Zn与CAB-Zn含量呈显著正相关关系;OxMn-Zn与AOFe-Zn含量呈显著负相关关系。茎叶含锌量与Ex-Zn、CAB-Zn含量呈极显著正相关关系,与OxMn-Zn含量呈显著正相关关系;根系含锌量与Ex-Zn、CAB-Zn 含量呈极显著正相关关系,与OxMn-Zn、DTPA-Zn含量呈显著正相关关系;茎叶吸锌量与WBO-Zn、OxMn-Zn、DTPA-Zn含量呈极显著正相关关系,与CAB-Zn含量呈显著正相关关系,与AOFe- Zn含量呈显著负相关关系;根系吸锌量与DTPA-Zn含量呈极显著正相关关系,与CAB-Zn、WBO-Zn、OxMn-Zn含量呈显著正相关关系,与AOFe-Zn含量呈显著负相关关系;土壤锌素转运率与DTPA-Zn、CAB-Zn、WBO-Zn、OxMn-Zn含量呈显著正相关关系,与AOFe-Zn含量呈显著负相关关系。
3 ? 小结与讨论
试验结果表明,绿洲盐化潮土全锌含量平均为97.12 mg/kg,缺锌植株与正常植株、根际土壤与非根际之间均没有显著差异;土壤有效锌含量平均为0.60 mg/kg,高于北方石灰性土壤缺锌临界值,缺锌植株根际土壤有效锌含量比正常植株根际土壤低42.70%,达到极显著差异水平。残留矿物态是绿洲盐化潮土最主要的锌形态,占到了全锌含量的79.43%,其次是晶形铁结合态、无定形铁结合态和松结有机态,交换态、碳酸盐结合态、松结有机态、氧化锰结合态锌含量都表现为根际土壤显著高于非根际土壤,正常植株显著高于缺锌植株。绿洲盐化潮土区缺锌玉米茎叶含锌量只有14.64 mg/kg,低于玉米缺锌临界值(20 mg/kg),比正常植株低52.30%,吸锌量比正常植株低66.52%,锌素转运率比正常植株低将近10百分点,我们判断是土壤盐分浓度或盐分离子抑制了锌的吸收和转运,这也有可能是绿洲盐化潮土玉米缺锌的另一个重要机制。玉米茎叶含锌量与Ex-Zn、CAB-Zn含量呈极显著正相关;茎叶吸锌量与WBO-Zn、OxMn-Zn、DTPA-Zn含量呈极显著正相关,与AOFe-Zn含量呈显著负相关;土壤锌素转运率与DTPA-Zn、CAB-Zn、WBO-Zn、OxMn-Zn含量呈显著正相关,与AOFe-Zn含量呈显著负相关。
玉米是缺锌敏感作物,叶片含锌量低于20 mg/kg时,就会表现出叶片脉间失绿或白化症状[20 ]。大部分学者将作物缺锌的原因归结为土壤缺锌,这也与世界范围内的缺锌区域分布相一致。但锌从土壤进入玉米籽粒是一个复杂的过程,受很多因素影响,尤其是在盐渍化环境中,土壤pH、含盐量、盐分离子都可能对土壤中锌的有效性造成影响。芦满济等[12 - 13 ]的结果表明,土壤有效锌与全盐含量呈负相关,与Cl-/SO42-比值呈正相关,与水溶性钙、镁离子呈负相关趋势;作物含锌浓度与土壤盐分含量呈负相关;土壤盐分对作物吸锌量和生物量的影响大于土壤有效锌。徐晓燕等[23 ]认为,HCO3-对根部锌向地上部转运的影响要大于对根吸收锌的影响。田霄鸿等[24 ]认为,高量HCO3-在抑制锌从小麦根系向地上部转运的同时,也降低了土壤有效锌含量,而且HCO3-对土壤有效锌的钝化作用比对锌转运的影响更为重要。
土壤中的锌有多种形态,虽然在不同地区、不同土壤、不同耕作栽培条件下,土壤锌形态分布差异较大,但交换态、松结有机态、碳酸盐结合态仍然是有效锌的主要来源,只是在不同条件下各形态锌发生了转化,从而导致了土壤有效锌含量的增加或减少。Ahumada 等[25 ]研究表明,土壤中种植生菜可以增加铁氧化态锌和有机质结合态锌,而种植芹菜后则提高了土壤中铁氧化态锌;还有研究发现,在石灰性土壤中种植玉米或菜豆后,土壤中晶型铁氧化态锌含量有显著增加[26 - 27 ]。魏孝荣等[28 ]在黄土高原17 a的定位试验表明,连续施入土壤中的锌有很大一部分转化为矿物态锌,只有一小部分进入土壤溶液,或与有机质、碳酸盐及氧化锰相结合。本研究结果与大部分石灰性土壤上锌形态分级的研究结果是一致的,但从交换态、碳酸盐结合态、松结有机态、氧化锰结合态等有效锌的主要组成形态来看,都是根际土壤显著高于非根际土壤,正常植株显著高于缺锌植株,由此可见盐渍化环境和根际环境都使得土壤锌形态、分布和有效性发生了改变,两者在土壤中的博弈是绿洲盐化潮土上玉米表现出缺锌和不缺锌的关键,但根际环境具体发生了怎样的变化,还有待于进一步研究。
参考文献:
[1] SOMMER A L,LIPMAN C B. ?Evidence on the indispensible nature of zinc and boron for higher green plant[J]. ?Plant Physiol,1926(1):231-249.
[2] TAKKAR P N,WALKER C D. ?The distribution and correction of zinc deficiency[M]. ?Springer Netherlands:Zinc in Soils and Plants,1993:151-165.
[3] SHIVAY Y S,KUMAR D,PRASAD R,et al. Relative yield and zinc uptake by rice from zinc sulphate and zinc oxide coatings onto urea [J]. ?Nutrient Cycling in Agroecosystems, 2008,80(2):181-188.
[4] MUHANNED A,FARAH A N,TAYEL E H,et al. Zinc adsorption-desorption isotherms: possible effects on the calcareous vertisol soils from Jordan[J]. Environmental Earth Sciences,2012,65(7):2079-2085.
[5] HAJIBOLAND R,YANG X E,ROMHELD V. Effects of bicarbonate and high pH on growth of Zn-efficient and Zn-inefficient genotypes of rice,wheat and rye[J]. ?Plant and Soil, 2003,
250:349-357.
[6] ZOU C Q,ZHANG Y Q,RASHID A,et al. Biofortification of wheat with zinc through zinc fertilization in seven countries[J]. ?Plant and Soil,2012,361:119-130.
[7] CAKMAK I. Enrichment of cereal grains with zinc:Agronomic or genetic biofortification[J]. ?Plant and Soil,2008,302(1):1-17.
[8] 余存祖,彭 ? 琳,劉耀宏,等. ?黄土区土壤微量元素含量分布与微肥效应[J]. ?土壤学报,1991,28(3):317-326.
[9] 刘合满,张兴昌,苏少华. ?黄土高原主要土壤锌有效性及其影响因素[J]. ?农业环境科学学报,2008,27(3):898-902.
[10] 刘 ? 铮. ?我国土壤中锌含量的分布规律[J]. ?中国农业科学,1994,27(1):30-37.
[11] LU X C,CUI J,TIAN X H,et al. Effects of zinc fertilization on zinc dynamics in potentially zinc-deficient calcareous soil[J]. ?Agronomy Journal,2012,104:963-969.
[12] 芦满济,祁国元,杨思存,等. ?绿洲盐化潮土的锌肥效应及适宜用量[J]. ?西北农业学报,1999,8(1):69-73.
[13] 芦满济,吴惠兰,胡 ? 梅. ?河西绿洲潮土有效锌含量特征及施锌条件[J]. ?甘肃农业科技,1999(2):39-40.
[14] BARBER S A. ?Soil Nutrient Bioavailability[M]. ?New York:Jones Wiley and Sons,Inc,1984.
[15] MARSCHNER H. Zinc uptake from soil[A]. ? ?In:Robson,A D(Ed.). ?Zinc in Soils and Plants[C]. Dordrecht:Kluwer Academic Publishers,1993:59-77.
[16] LYNCH J P. Root architecture and productivity[J]. ?Plant Physiology,1995,109:7-13.
[17] 孙 ? 琴,王晓蓉,丁士明. ?超积累植物吸收重金属的根际效应研究进展[J]. ?生态学杂志,2005,24(1):30-36.
[18] 陈有鑑,陶 ? 澍,邓宝山,等. ?不同作物根际环境对土壤重金属形态的影响[J]. ?土壤学报,2001,38(1):54-59.
[19] 孟令军,耿增超,殷金岩,等. ?秦岭太白山区6种中草药根际与非根际土壤化学性质及酶活性[J]. ?应用生态学报,2012,23(10):2685-2692.
[20] 张 ? 超,刘国斌,薛 ?萐,等. ?黄土丘陵区不同植被根际土壤微量元素含量特征[J]. ?应用生态学报,2012,23(3):645-650.
[21] 孙文泰,马 ? 明,刘兴禄,等. ?地表覆盖方式对陇东旱塬苹果园根际土壤微生物及酶活性的影响[J]. ?甘肃农业科技,2017(12):64-68.
[22] 胡明芳,文启凯,田长彦. ?作物锌素营养研究进展与展望[J]. ?新疆农业科学,1997(5):214-216.
[23] 徐晓燕,杨肖娥,杨玉爱. ?HCO3-对不同水稻品种Zn吸收运输的影响[J]. ?应用与环境生物学报,2001,7(6):532-535.
[24] 田霄鸿,买文选,陆欣春,等. ?重碳酸根对不同小麦基因型生长及锌营养的影响[J]. ?植物营养与肥料学报,2008,14(1):9-16. [25] ALMENDROS P,GONZALEZ D,ALVAREZ J M. ?Long-term bioavailability effects of synthesized zinc chelates fertilizers on the yield and quality of a flax (Linum usitatissimum L.) crop[J]. ?Plant and Soil,2013,368(1-2):251-265.
[26] 胡学玉,李学垣,谢振翅. ?不同青菜品种吸锌能力差异以及与根系分泌物的关系[J]. ?植物营养与肥料学报,2002,8(2):234-238.
[27] AHUMADA I,MENDOZA J,NAVARRETE E,et al. Sequential extraction of heavy metals in soils irrigated with wastewater[J]. ?Communications in Soil Science and Plant Analysis,1999,30(9-10):1507-1519.
[28] 魏孝荣,郝明德,张春霞. ?黃土高原地区连续施锌条件下土壤锌的形态及有效性[J]. ?中国农业科学,2005,38(7):1386-1393.
(本文责编:陈 ? ?伟)