活性氧诱导运动中肌源性IL-6产生的信号转导通路述评

    邱国荣 徐晓阳 谢敏豪

    摘要:就运动中活性氧诱导肌原性IL-6产生的机制等问题做综述。IL-6是运动过程中变化非常明显的一种细胞因子,其变化幅度与运动时间和运动强度关系密切。研究表明,运动中生成的IL-6主要来源于收缩的骨骼肌,骨骼肌在运动过程中产生的自由基,尤其是活性氧是运动中诱导IL-6产生的一个主要原因。

    关键词:运动生物化学;运动;活性氧;肌源性IL-6;综述

    中图分类号:G804.7文献标识码:A文章编号:1006-7116(2009)05-0108-05

    Review of signal transduction channels for active oxygen to induce the production of interleukin-6 originating from muscles during exercising

    QIU Guo-rong1,2,XU Xiao-yang1,XIE Min-hao3

    (1.School of Physical Education,South China Normal University,Guangzhou 510006,China;

    2.Department of Physical Education,Chongqing University of Arts And Sciences,Yongchuan 402160,China;

    3.Sport Science School,Beijing Sport University,Beijing 100086,China)

    Abstract: The authors gave an overview of such issues as the mechanism for active oxygen to induce the production of interleukin-6 (IL-6) originating from muscles during exercising. IL-6 is a type of cytokine that changes very significantly in the process of exercising; its changing magnitude is closely related to exercise time and exercise intensity. Via their study the authors revealed the following findings: IL-6 produced during exercising originates primarily from contracting skeletal muscle; free radicals produced by skeletal muscle in the process of exercising, especially active oxygen, are a major cause for inducing the production of IL-6 during exercising.

    Key words: sports biochemistry;exercising; active oxygen;muscle-originated IL-6;overview

    从20世纪90年代中期发现运动中机体可以产生大量IL-6到现在,短短10余年时间,IL-6作为运动中变化最明显的细胞因子[1],受到人们极大的关注。对于运动中产生的IL-6的功能已经有了较为广泛而深入的研究。如今,已不再简单地将IL-6定义为运动损伤的指标[2],对于运动中IL-6的来源比较统一的认识是IL-6是由运动中的骨骼肌分泌而来[3-4]。已有的研究表明,肌原性IL-6在运动中机体能量代谢、内分泌和骨骼肌收缩等过程中扮演重要角色[5-6]。但对于引起IL-6在运动中大量分泌的因素却尚无定论。近期的研究表明,IL-6的产生与自由基代谢关系紧密,尤其与活性氧产生有关[7]。

    活性氧的产生在需氧生物生命过程中是一个正常现象[8]。生理条件下,这些自由基大多数可以被细胞内的抗氧化系统清除。当机体处于运动等氧化应激状态时,活性氧生成速度大于抗氧化系统的清除速度,造成活性氧在体内的累积,对组织和细胞产生危害。不同刺激诱导细胞产生的内源性活性氧可以作为第二信使,通过改变氧化还原状态调节与细胞增殖、分化及凋亡相关?的信号转导通路中多种靶分子的活性,最终决定细胞的命运[9]。

    1IL-6含量与活性氧的关系

    运动导致活性氧水平在血液中和肌肉中都有所增加,细胞内活性氧生成的主要来源是通过线粒体电子传递链、细

    胞质中的NADH氧化酶、黄嘌呤氧化酶、膜结合酶如NADPH氧化酶等引起。活性氧是广泛的信号转导通路的中介,能够引起各种细胞类型中的细胞因子产生[10-12],运动中由肌肉产生的大量的IL-6与活性氧也有密切关系。

    1.1抗氧化剂补充与IL-6

    Theodoros V等[13]对5名健康的非运动员服用复合抗氧化剂VC、VE、VA、别嘌呤醇和N-乙酰半胱氨酸发现,服用抗氧化剂前进行70%最大摄氧量强度的自行车运动后其血液标本中的IL-6含量是运动前的6倍左右,而在服用抗氧化剂后再进行相同强度的运动,IL-6在血液中的含量在运动前后变化明显平缓,研究者认为服用了抗氧化剂减少了运动诱导的活性氧水平,继而减少了由活性氧介导的IL-6的产生。

    Christian P等[14]对健康男性进行单盲法安慰对照设计,随机对年轻的健康男性受试者进行口服联合补充VC、VE或安慰剂,28 d后,受试者在各自的50%最大输出功率下完成3 h两腿膝关节伸膝运动后发现,补充抗氧化性维生素组和对照组的肌肉IL-6mRNA水平和蛋白水平在运动中都升高。同时发现,服用维生素组的血浆IL-6纯释放量变化无显著性差异,而对照组IL-6纯释放量明显增加。研究者认为,补充维生素可以减少运动中IL-6的生成,其主要途径是通过抑制IL-6蛋白质从收缩的骨骼肌中释放。

    David C等[15]研究发现,补充VC两周后,进行90 min不间断的折返跑,跑后补充VC组血浆IL-6水平明显低于未补充组。Thompson D等[16]的研究也支持前者的研究结果,说明补充抗氧化剂可以减少运动诱导的IL-6的产生。

    在运动中补充抗氧化剂以减少运动产生的活性氧的作用已得到了较为肯定的结果,通过补充抗氧化剂可以增强机体的抗氧化功能,增加抗氧化系统的储备,减少运动导致的氧化应激,从而减少活性氧的生成[17-19]。那么,从运动中活性氧的变化与IL-6的变化呈一致性这一特质可以推测,运动中产生的内源性的活性氧是诱导运动中IL-6产生的原因之一。

    1.2IL-6含量与活性氧浓度的关系

    C2C12细胞是小鼠骨骼肌肌母细胞,可以分化生成肌管,其生成的肌管具有与骨骼肌类似的收缩功能[20],具有兴奋性[21],能产生兴奋-收缩偶联[22]。Ioanna Kosmidou等[7]在离体培养分化后的C2C12中,加入不同浓度的H2O2对细胞进行孵育,细胞上清液中IL-6量随H2O2浓度增加呈依赖性增加。研究验证了分化的C2C12细胞在活性氧的诱导下可以产生IL-6,且其产生量与活性氧浓度呈正相关性。同时,该研究小组对IL-6mRNA在H2O2孵育下的变化进行了研究,结果发现,在活性氧孵育下的IL-6mRNA水平提高,说明在C2C12细胞中,活性氧是通过转录依赖性机制刺激IL-6的产生。

    在运动过程中,随着运动强度和运动时间的变化,机体产生的活性氧随之改变。研究发现,其量的变化与运动强度呈正相关[23],这与实验中不同浓度的活性氧的状态极其相似,实验结果也验证了运动中补充抗氧化剂得出的推测,证明了在肌细胞中活性氧可以诱导IL-6的产生,说明运动中大量IL-6产生的主要诱因之一是活性氧。

    2活性氧诱导IL-6生成的信号转导通路

    氧化应激-敏感性信号转导通路利用ROS从胞质中向细胞核传递信号来刺激细胞生长、分化、增殖和凋亡[24]。这些信号转导通路包括NF-κB、丝裂原活化蛋白激酶(mitogen-activated proteinkinases,MAPKs)、磷酸肌醇3-激酶(PI3-K)/Akt途径、P53激活和热应激反应。虽然这些路径在调节氧化-抗氧化平衡稳态方面都很重要,但NF-κB和MAPKs被认为是在氧化应激中对细胞最关键的途径[25]。

    2.1NF-κB通路

    NF-κB是一个多聚体的转录因子,由Rel家族中的成员组成。在哺乳动物中,这些蛋白包括p50(NF-κB1)、p52(NF-κB2)、p65(RelA)、RelB、c-Rel、p105和p100。在生理状态下,NF-κB结合一个抑制性亚单位I-κB,以非活性状态存在于细胞质中。NF-κB可以被各种外部刺激激活,包括H2O2、致炎性细胞因子、LPS、紫外线照射、病毒感染和佛波酯十四烷酸和佛波醇形成的酯(phorbol esters)。这些信号能导致细胞内ROS升高,可能作为基础的信使激活NF-κB级联上游区关键激酶[26]。

    运动作为氧化应激,使机体内产生过多的活性氧,可激活NF-κB通路,使NF-κB移位入核,调节基因表达[27]。当受到外界刺激时,由两个亚单位(IKKα和IKKβ)和一个调节的IKKγ亚基磷酸化IκBα的丝氨酸残基,使它普遍在蛋白化并使蛋白体降解[28]。释放NF-κB二聚体(主要是p50和p65),促进它们的核转运和NF-κB介导的基因转录[29]。NF-ΚB激活可以通过给予抗氧化剂的方法被抑制[30]。

    Espen E等[31]通过对小鼠进行20周训练发现,运动诱导的IL-6增加是通过激活NF-KB通路介导的。Ioanna Kosmidou等[17]在实验中用H2O2刺激C2C12肌管显示,ROS可以增加IκB-α磷酸化和降解,用ROS-生成因子处理C2C12增加AP-1和NF-κB-依赖性启动因子。用NF-κB的抑制剂孵育肌管或用IκB-α突变体瞬时转染肌管,可以抑制ROS诱导肌管产生的IL-6释放。提示ROS刺激肌管产生IL-6是通过转录激活IL-6基因,通过NF-KB依赖性途径完成的。

    2.2MAPKs通路

    MAPKs是信号从细胞表面传导到细胞核内部的重要传递者。目前,已在哺乳动物细胞克隆和鉴定了细胞外信号调节蛋白激酶(extracellular2signalregulated protein kinase,ErK),c2Jun 氨基末端激酶(c2Jun amino2terminal kinase,JNK)、p38和ERK5PBMK1(big MAP kinase 1)等4个MAPK亚族[32]。在MAPKs通路中有一个共同点,就是有3个高度保守的关键蛋白激酶:即MAPKKK、MAPKK、MAPK。细胞外刺激通过某些中间环节激活MAPKKK(MAP激酶激酶激酶、MAP3K、MEKK、MKKK),然后MAPKKK激活MAPKK(MAP激酶激酶、MAP2K、MEK、MKK);再由MAPKK通过对苏氨酸和酪氨酸双位点磷酸化激活MAPK,最后激活转录因子,调节特定基因的表达[33]。尽管每个蛋白激酶具有相似的激活机制,但每条途径都有其特异的上游激活物和相应底物,最终产生不同的生物效应。在运动中,MAPKs家族中的ERK1/2、p38和JNK3个亚族都可被激活[34],但与活性氧关系密切的,研究较为深入的当属p38MAPK。

    p38MAPK与运动中氧化应激关系密切,可被应激刺激(Uv、H2O2、热休克和缺氧等)、炎性因子(TNF-α、IL-1和FGF(成纤维细胞生长因子)等)、LPS和革兰氏阳性细菌细胞壁成分激活[35-37],激活p38的磷酸化级联反应是通过MEKKs/TAK-MKK6/MKK3-p38MAPK进行的。p38MAPK家族中的激酶可通过磷酸化酶(MKPs)的去磷酸化作用恢复基态。

    Mari-Carmen等[38]对小鼠进行力竭性运动后,通过补充别嘌呤(抗氧化剂)可减少NF-ΚB活性和MAPK活性,通过MAPKs通路中的ErK1/2和p38通路,激活NF-ΚB,使核因子入细胞核,调节基因表达。在心肌细胞中,IL-6转录是由p38MAPK通路中的MKK6介导的,MKK6还诱导IL-6的释放,通过激活p38途径,活化NF-ΚB,调节IL-6产生[39-40]。运动后小鼠骨骼肌p38MAPK通路被激活,通过MEKKS/TAK-MKK3/6-p38MAPK通路激活NF-κB,继而调节由活性氧诱导产生的IL-6[41]。

    通过对这条信号转导通路的研究表明,在运动中,活性氧可以通过激活p38MAPK,进而使I-κB磷酸化,活化NF-κB,活化后的NF-κB移位入细胞核,在转录和转录后水平调节IL-6基因表达。但氧化应激通路是否都要经过活化NF-κB,才能够对IL-6基因进行调节似乎还没有定论。有研究表明,活性氧可诱导p38MAPK通路激活,且存在时间和剂量依赖性关系,活性氧也可温和地刺激NF-κB转位进入细胞核,但使用抑制剂抑制了MAPK通路后,对活性氧诱导的NF-κB的核转位或是磷酸化IκB没有影响,这说明在氧化应激中,NF-κB转录到细胞核和MAPKs激活之间没有直接关系[42]。

    3IL-6对活性氧介导的信号转导通路的复调节作用

    Christian P. Fischer等[43]用敲除IL-6基因的小鼠和野生类型小鼠作对比实验发现,运动诱导的肌肉纤维中的IL-6受体转运很可能是通过IL-6依赖性机制进行的,这个结论在注射人重组IL-6研究中也被证实,该研究认为,在IL-6受体的转运过程中,IL-6可能是通过在转录后水平增加IL-6受体的方式对IL-6受体进行调节。

    Pernille Keller等[44]报道,在受试者股静脉中持续注射人重组IL-6 3 h后,肌肉中IL-6mRNA水平大幅度提高,说明IL-6有自分泌调节功能,并且是通过基因转录完成的。类似的实验在脂肪细胞和血管内皮的平滑肌细胞中也得到了验证。

    骨骼肌衍生的细胞因子如IL-6可能激活IKKα/β作为运动和肌肉收缩的回应。IKKα/β的活性与NF-κB活性紧密相伴[27]。在激活过程中,NF-κB依靠p38通路激活,IL-6首先通过减少IκBα浓度诱导NF-κB-DNA结合活化,其次,可能激活p65-NF-κB,然后进入细胞核对基因进行转录和调节[45]。

    这些研究表明,运动中IL-6可以通过自分泌进行调节,它不仅只是活性氧诱导机体通过NF-κB通路产生的下游产物,很可能也是NF-κB通路的上游信号分子,通过再次激活NF-κB通路,对活性氧介导的肌原性IL-6的产生起到复调节的作用。

    在运动中,随着运动时间和强度的增加,活性氧和IL-6之间的相关性研究表明机体产生的活性氧可以通过激活MAPKs通路和NF-κB通路诱导肌原性IL-6的产生,增加的IL-6是对活性氧这种信号分子在信号转导中产生的应答反应,这种状态下IL-6的作用已超出了单纯的免疫应答因子的作用,而是在机体运动过程中参与调节机体能量物质和内分泌的代谢平衡,使机体在运动应激状态下达到新的稳定状态。在此过程中,IL-6不仅是活性氧介导的信号转导通路中的下游产物,对于信号转导通路同样可能起到复调节的作用。当然,在运动中发现的IL-6增加的现象可能由许多因素引起,但活性氧无疑是其中重要的影响因素之一。

    参考文献:

    [1] Ostrowski K,Rohde T,Zacho M,et al. Evidence that IL-6 is produced in skeletal muscle during prolonged running[J]. J Physiol,1998,508(3):949-953.

    [2] Jonsdottir I H,Schjerling P. Muscle contractions induce interleukin-6 mRNA production in rat skeletal muscles[J]. J Physiol,2000,528(1):157-163.

    [3] Adam Steensberg. Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6[J]. J Physiol,2000,529:237-242.

    [4] Steensberg A,Gvan Hall,Osada T,et al. Interleukin-6 production in contracting human skeletal muscle is influenced by pre-exercise muscle glycogen content[J]. J Physiol,2001,537(2):633-639.

    [5] Pedersen,Fischer C P. Physiological roles of muscle-derived interleukin-6 in response to exercise[J]. Curr Opin Clin Nutr Metab Care,2007,10(3):265-271.

    [6] Bente K P,Febbraio M. Muscle-derived interleukin-6—A possible link between skeletal muscle,adipose tissue,liver,and brain[J]. Brain Behav Immun,2005,19(5):371-376.

    [7] Ioanna K,Theodoros V,Angeliki X,et al. Production of interleukin-6 by skeletal myotubes-role of Reactive Oxygen species[J]. Am J Respir Cell Mol Biol,2002,26(5):587-593.

    [8] Banerjee A K,Mandal A,Chanda D,et al. Oxidant,antioxidant and physical exercise[J]. Molecular and Cellular Biochemistry,2003,253(1-2):307-312.

    [9] 景亚武,易静,高飞,等. 活性氧从毒性分子到信号分子——活性氧与细胞的增殖、分化和凋亡及其信号转导途径[J]. 细胞生物学杂志,2003,25(4):197-202.

    [10] Haddad J J,Safieh-Garabedian B,Saade N E,et al. Thiol regulation of pro-inflammatory cytokines reveals a novel immunopharmacological potential of glutathione in the alveolar epithelium[J]. The Journal of Pharmacology and Experimental Therapeutics,2001,296:996-1005.

    [11] Ali M H,Schlidt S A,Chandel N S,et al. Endothelial permeability and IL-6 production during hypoxia: role of ROS in signal transduction[J]. Am J Physiol,1999,277:L1057–L1065.

    [12] Yoshida Y,Maruyama T,Fujita T,et al. Reactive oxygen intermediates stimulate interleukin-6 production in human bronchial epithelial cells[J]. Am J Physiol,1999,276:L900–L908.

    [13] Theodoros V,Katsaounou P,Karatza M H,et al. Strenuous resistive breathing induces plasma cytokines role of antioxidants and monocytes[J]. American Journal of Respiratory and Critical Care Medicine,2002,166:1572-1578.

    [14] Christian P F,Hiscock N J,Penkowa M,et al. Supplementation with vitamins c and e inhibits the release of interleukin-6 from contracting human skeletal muscle[J]. The Journal of Physiology,2004,558(2):633–664.

    [15] David C,Peters E M,Henson D A,et al. Influence of vitamin C supplementation on cytokine changes following an ultramarathon[J]. Journal of Interferon & Cytokine Research,2000,20(11):1029-1035.

    [16] Thompson D,Williams C,McGregor S J,et al. Prolonged vitamin C supplementation and recovery from demanding exercise[J]. Int J Sport Nutr Exerc Metab,2001,1(4):466-481.

    [17] Kanter M M,Nolte L A,Holloszy J O. Effects of an antioxidant vitamin mixture on lipid peroxidation at rest and post exercise [J]. J Appl Physiol,1993,74:965-969.

    [18] Goldfarb,Rjbloomer,Mckenzie M J. Combined antioxidant treatment effects on blood oxidative stress after eccentric exercise[J]. Medicine & Science in Sports & Exercise,2005,37(2):234-239.

    [19] Sacheck,Blumberg J B. Role of vitamin E and oxidative stress in exercise[J]. Nutrition,2001,17(10):809-814.

    [20] Gauthier-Rouviere C,Vandromme M,Tuil D,et al. Expression and activity of serum response factor is required for expression of the muscle-determining factor MyoD in both dividing and differentiating mouse C2C12 myoblasts[J]. Mol Biol Cell,1996,7(5):719-729.

    [21] Dennis R G,Dow D E. Excitability of skeletal muscle during development [J]. Tissue Eng,2007,13(10):2395-2404.

    [22] Maccallini,Pietrangelo T,Mancinelli R,et al. The excitation-contraction coupling on C2C12 skeletal muscle myotubes was modulated by NO-donor ester of gemfibrozil[J]. Nitric Oxide,2008,18(3):168-175.

    [23] Andreas Michael Niess,Simon P. Response and adaptation of skeletal muscle to exercise–the role of reactive oxygen species [J]. Frontiers in Bioscience,2007,2:4826-4838.

    [24] Meyer,Pahl H L,Bauerle P A. Regulation of the transcription factors NF-κB and AP-1 by redox changes[J]. Chemico-Biol. Interact,1994,91,91-100.

    [25] Henning F. Kramer. Exercise,MAPK,and NF-κB signaling in skeletal muscle[J]. J Appl Physiol,2007,103:388-395.

    [26] JI L L. Acute exercise activates nuclear factor (NF-κB )signaling pathway in rat skeletal muscle[J]. The FASEB Journal,2004,18:1499-1506.

    [27] Richard C H,Hirshman M F,Y Li,et al. Regulation of IκB kinase and NF-κB in contracting adult rat skeletal muscle[J]. Am J Physiol Cell Physiol,2005,289:C794-C801.

    [28] Zandi E,Rothwarf D M,Delhase M,et al. The IκB kinase complex (IKK) contains two kinase subunits,IKKα and IKKβ,necessary for IκB phosphorylation and NF-κB activation[J]. Cell,1997,91:243-252.

    [29] Muller J M,Krauss B,Kaltschmidt C,et al. Hypoxia induces c-fos transcription via a mitogen-activated protein kinase-dependent pathway[J]. J Biol Chem,1997,272:23435–23439.

    [30] Respir J. The role of nuclear factor-κB in cytokine gene regulation[J]. Am Cell Mol Biol,1997,17:3-9.

    [31] Spangenburg E E,Brown D A,Johnson M S,et al. Exercise increases SOCS-3 expression in rat skeletal muscle:potential relationship to IL-6 expression[J]. J Physiol,2006,572(3):839-848.

    [32] 姜勇,龚小卫. MAPK信号转导通路对炎症反应的调控[J]. 生理学报,2000,52(4):267-271.

    [33] 陈晔光,张传茂,陈佺. 分子细胞生物学[M]. 北京:清华大学出版社,2006.

    [34] Goodyear L J,Chang P Y,Sherwood D J,et al. Effects of exercise and insulin on mitogen-activated protein kinase signaling pathways in rat skeletal muscle[J]. Am J Physiol-Endocrinology And Metabolism,1996,271:E403-E408.

    [35] Boder A J. Uv-light induces p38 MAPK-dependent phosphorylation of Bel[J]. Biochem Biophys Res Commun,2003,301(4):923-926.

    [36] Taro M,Turesson I,Book M,et al. p38MAPK kinase negatively regulates engothelial cell surviva,proliferation,and differentiation in FGF-2-stimulated angiogenesis[J]. J Cell Biology,2002,156(1):149-160.

    [37] Chakravortty D,Kato Y,Koide N,et al. Extrancellular matrix components prevent lipopolysaccharide-induced bovine arterial endothelial cell injury by inhibiting p38 mitogen-activated protein kinase [J]. Thromb Res,2000,98(2):187-189.

    [38] Mari-Carmen,Borras C,Pallardo F V,et al. Decreasing xanthine oxidase-mediated oxidative stress prevents useful cellular adaptations to exercise in rats[J]. J Physiol,2005,567(1):113-120.

    [39] Craig R,Larkin A,Mingo A M,et al. p38 MAPK and NF-κB collaborate to induce interleukin-6 gene expression and release:Evidence for a cytoprotective autocrine signaling pathway in a cardiac myocyte model system[J]. J Biol Chem,2000,275:23814-23824.

    [40] Craig. p38 Mitogen-activated protein kinase and nuclear factor-κB collaborate to induce interleukin-6 Gene expression and release:evidence for a cytoprotective anticrime signaling pathway in a cardiac myocyte model system[J]. J Biol Chem,2000,275:23814-23824.

    [41] Motoaki Sano,Ukuda K F,Sato T,et al. ERK and p38 MAPK,but not NF-κB,are critically involved in reactive Oxygen species–mediated induction of IL-6 by angiotensin II in cardiac fibroblasts[J]. Circulation Research,2001,89:661.

    [42] Eirini Kefaloyianni,Gaitanaki C,Beis I. ERK1/2 and p38-MAPK signalling pathways,through MSK1,are involved in NF-κB transactivation during oxidative stress in skeletal myoblasts[J]. Cellular Signalling,2006,18(12):2238-2251.

    [43] Keller P,Penkowa M,Keller C,et al. Interleukin-6 receptor expression in contracting humanskeletal muscle:Regulating role of IL-6[J]. The FASEB Journal,2005,19:1181-1183.

    [44] Keller P,Keller C. Interleukin-6 production by contracting human skeletalmuscle: Autocrine regulation by IL-6[J]. Biochemical and Biophysical Research Communications,2003,310:550-554.

    [45] Bernat Baeza-Raja,P Munoz-Canoves-Molecular.p38MAPK-induced nuclear factor-κB activity is required for skeletal muscle differentiation:role of interleukin-6[J].

    Molecular Biology of the Cell,2004,15(4):2013-2026.

    [编辑:郑植友]