自动控制理论在火电厂热工自动化中的应用

    李千海

    【摘? 要】随着科学技术的迅猛发展和信息时代的全面到来,火电厂热工自动化技术也获得了迅猛的发展。自动控制理论在火电厂热工自动化中的应用使得热工自动化技术逐渐实现了智能化、高速化和透明化,能够更好地处理和分析火电厂运营过程中的故障和问题,提高火电厂的整体工作效率和质量。论文主要针对自动控制理论在火电厂热工自动化中的具体应用进行深入研究。

    【Abstract】With the rapid development of science and technology and the full arrival of the information age, thermal automation technology of thermal power plant has also obtained rapid development. The application of automatic control theory in thermal automation of thermal power plant makes the thermal automation technology gradually realize intelligent, high-speed and transparent, which can better handle and analyze the faults and problems in the operation process of thermal power plant, and improve the overall work efficiency and quality of thermal power plant. This paper mainly and deeply studies the application of automatic control theory in thermal automation of thermal power plant.

    【关键词】自动控制理论;火电厂;热工自动化

    【Keywords】automatic control theory; thermal power plant; thermal automation

    【中圖分类号】TM621? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?【文献标志码】A? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?【文章编号】1673-1069(2020)07-0182-02

    1 引言

    热工自动化技术在火电厂中的应用,能够有效提升火电厂的工作质量和工作效率,促进火电厂生产效益的提高。火电厂热工自动化的建设过程中会涉及各种各样的理论知识和技术知识,自动控制理论是热工自动化建设过程中的关键理论内容,该项理论的应用可以更好地提升电厂的运行水平和运行质量。因此,需要提高对自动控制理论的重视程度,明确自动控制理论的应用价值以及应用方向。

    2 火电厂热工实现自动化的必然趋势

    在火力发电厂当中,为了更好地满足人们对电力的具体需求,通常使用非常多的大型设备来完成发电。这种大型设备一般由汽包水位、锅炉燃油量以及蒸汽温度等部分组成。工作人员很难实施严格化的管理以及控制,因此,一定要使用各种各样的自动化技术,这样就会使得其自动化水平得到提高,更好地满足人们的具体用电需求。在现代社会的发展过程中,人们对电力系统的透明性关注度一直在不断地提高,这就要求电力系统在运行的过程当中一定要使得其自动化水平得到不断提高。火力发电厂的自动化可以保障系统运行具备可靠性,属于比较重要的基础部分。第一,员工可以定期地检查以及维护电力系统当中的具体设备,以保障电力设备运行具备稳定性以及可靠性;第二,要求火电厂热工人员具备较高的综合素质、技能以及业务水平,更好地掌握关于电力设备运行的具体工作原理,及时地发现存在的一些故障问题,并进行相应的解决,这样可以保障设备运行具备更好的安全性以及稳定性;第三,要求工作人员在电力系统运行的基础之上制定比较完整以及系统的维护计划,并利用自动化系统监督,更好地控制电力设备的运行,提高其自动化水平,保障其在操作的过程中具备更好的稳定性。

    3 自动控制理论概述

    3.1 自动控制理论简介

    自动控制理论在目前已经成为自动控制科学的核心,经历了现代化控制理论到智能控制理论的发展过程,可以将自动控制系统根据不同的条件进行有效分类。根据控制装置的差别可以将自动控制系统分为模拟式的常规控制以及计算机控制两种。从自动控制理论是否有反馈方面,可以将之分为闭环和开环两种控制系统。另外,从设定值是否固定的角度可以将自动控制理论分为随动控制系统以及定值控制系统[1]。

    3.2 火电厂热工自动化的内容

    目前,各个领域在发展与建设过程中都十分重视自动化的建设,在企业发展过程中,应用热工自动化技术能够更好地促进企业实现持续发展。首先,热工自动化涵盖了多个环节的内容,自动检测最为关键,可以利用自动化的仪表直接测量火电厂在运营过程中所形成的各种热工参数,及时发现火电厂在运行过程中可能存在的各种问题,并采取针对性的措施进行解决和处理,保证火电厂运营机组的运行质量和状态;其次,火电厂热工自动化的自动控制系统可以针对电厂机组设备的应用情况进行有效控制,提高机组设备运行的稳定性、安全性和可靠性,根据固有步骤进行操作,所以常被称为顺序控制,主要应用于机组运行过程中对生产机组运行、启停以及事故处理的环节;最后,控制装置本身也具有一定的保护功能和非常强大的判断能力,在完成某项操作之后,自动控制系统会明确已经完成整个操作的所有内容之后再进行下一项操作,不然将会出现中断现象并进行报警。在机组运行过程中,如果应用了无人控制的模式,在基本数据偏离正常水平的情况下,系统会进行报警,并自动给出一定的指示。工作人员可以结合警告和指示加以调整和改进,这样能够有效降低故障发生的概率,保证工作人员的生命安全,提高火电厂的工作效率和工作质量[2]。

    4 自動控制理论在火电厂热工自动化中的应用

    4.1 加强对热工自动化的控制与管理

    锅炉设备是火电厂生产经营过程中最为关键的工作设备,在火电厂实际经营期间,优化锅炉燃烧效率,能够有效减少火电厂运营期间对于煤炭资源的消耗,提高火电厂的经济效益,实现节能减排的目标。首先,保证蒸汽的初始参数是提高机组热效率的重要方式,可以适当地降低蒸汽的初压和初温,通过调整再热汽温的方式减少能量的耗散[3]。在工作过程中,需要重视对热气温的应用,以便进一步控制喷水量,减少锅炉的排烟热损失。其次,还需要科学设置锅炉的排烟温度,排烟温度是对排烟热损失影响最大的因素,适当地降低排烟温度,不仅可以控制和降低煤炭资源的消耗,而且也能够减少污染物的排放。因此,在实际工作过程中,需要合理调整锅炉生产流程,有效降低锅炉生产过程中的风险,加强对风煤曲线的优化和调整,使得磨煤机可以在正常工作下维持比较低的排风量,降低和控制磨煤机的通风阻力,提高锅炉的运营效率和运营质量。

    4.2 提高火电厂热工自动化系统的运营质量

    热工自动化技术包含热能工程技术、控制理论、计算机技术、信息技术以及智能仪器仪表技术等多方面的技术,主要是通过检测和控制热力学相关参数,从而实现对整体生产过程的检测、控制、优化、决策、管理及调度,对于火电厂的正常安全生产有着十分重要的价值,可以降低生产能耗,提高生产效率。热工自动化技术可以自动控制锅炉、汽机以及其他辅助设备的运行,使得机组能够自动地适应工况的改变,保持持续安全的工作状态。热工自动化技术随着自动化技术的发展,也获得了持续的进步,各种各样的新材料、新工艺以及新理论的诞生,使得自动化技术也进行着不断的优化和升级。变送器和各种传感器在自动化技术中的应用,提高了自动化技术的应用灵敏性和准确性,未来热工系统将围绕着可持续发展的主题进行进一步的优化,逐渐朝向网络化、透明化、智能化以及无线化的方向发展,不断应用新的测量控制原理和控制方法,实现测量数据通信控制保护的一体化发展,使得火电厂机组的故障处理及运行操作像操作普通计算机一样方便。

    4.3 应用自律分布式系统

    火电厂包括各种各样的子系统以及各种类型的设备,为了避免各个设备异常或者系统异常而对整个系统的运行造成的不利影响,可以通过自律式分布式系统的应用,实现设备与系统的控制和协调。在某个子系统发生故障时可以利用冗余设备保护系统,保证系统能够正常稳定的工作,并结合系统运行参数的改变,实现系统自身工作状态的调整与优化,保证系统之间的状态和运行参数能够得到更好的匹配。

    5 结语

    综上所述,本文对自动控制理论在火电厂热工自动化中的应用进行了全面的剖析,希望能够给予相关人士一些启发。自动控制理论在火电厂热工自动化中的应用能够进一步提高火电厂生产效率和管理效率,提升火电厂的经济效益和生态效益。在具体应用热工自动化控制技术的过程中,需要结合火电厂的实际运营情况进行合理的设计与控制,结合企业的发展现状,研发与企业实际情况相协调的热工自动化控制系统,科学应用自动控制理论,提高自动化控制系统的可操作性和应用性。

    【参考文献】

    【1】孙振洋.控制理论在火电厂热工自动化中的应用[J].科技创业家,2018(23):50.

    【2】李生录.自动控制理论在火电厂热工自动化中的应用[J].中外企业家,2018(28):235.

    【3】任桂滨.自动控制理论在火电厂热工自动化中的应用[J].中国科技投资,2018(Z4):128.