沉默MAGI2基因对乳癌耐药细胞增殖与凋亡影响

    李一 黄婷 杨麟瀚 吴池华

    

    

    

    [摘要] 目的 探讨膜相关鸟苷酸激酶转化蛋白2(MAGI2)对乳癌耐药细胞增殖、凋亡的影响。

    方法 采用荧光定量PCR(qPCR)检测MAGI2在人乳癌细胞MCF-7与阿霉素耐药细胞MCF-7/ADR中的表达量。在Lipofectamine 2000介导下将siRNA NC、siRNA MAGI2质粒转染入MCF-7/ADR细胞。以细胞计数(CCK-8)检测细胞增殖,流式细胞术实验检测凋亡。应用蛋白质印迹法(Western blot)检测MAGI2、磷脂酰肌醇-3激酶/丝苏氨酸蛋白激酶(PI3K/AKT)信号通路相关蛋白表达。

    结果 与MCF-7细胞相比,MAGI2在MCF-7/ADR细胞中表达量明显增加(t=19.902,P<0.05)。si-MAGI2可抑制MCF-7/ADR细胞增殖,促进其凋亡(t=4.027~24.651,P<0.05),降低p-PI3K、p-AKT蛋白水平(t=18.266、19.117,P<0.05)。

    結论 MAGI2可能通过调控PI3K/AKT信号通路促进MCF-7/ADR细胞增殖,抑制其凋亡。

    [关键词] MAGI2;乳癌耐药细胞;细胞增殖;细胞凋亡;PI3K/AKT信号通路

    [中图分类号] R737.9;R345.57

    [文献标志码] A

    [文章编号] 2096-5532(2021)03-0369-04

    doi:10.11712/jms.2096-5532.2021.57.064

    [开放科学(资源服务)标识码(OSID)]

    [网络出版] https://kns.cnki.net/kcms/detail/37.1517.R.20210201.1054.003.html;2021-02-01 15:58:41

    EFFECT OF MAGI2 GENE SILENCING ON THE PROLIFERATION AND APOPTOSIS OF DRUG-RESISTANT BREAST CANCER CELLS

    LI Yi, HUANG Ting, YANG Linhan, WU Chihua

    (Department of Breast Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial Peoples Hospital, Chengdu 610072, China)

    [ABSTRACT]Objective To investigate the effect of membrane-associated guanylate kinase 2 (MAGI2) on the proliferation and apoptosis of drug-resistant breast cancer cells.

    Methods Quantitative real-time PCR was used to measure the expression of MAGI2 in human breast cancer MCF-7 cells and adriamycin-resistant MCF-7/ADR cells. The siRNA NC and siRNA MAGI2 plasmids were transfected into MCF-7/ADR cells under the mediation of Lipofectamine 2000. CCK-8 assay was used to observe cell proliferation, and flow cytometry was used to measure cell apoptosis. Western blot was used to measure the protein expression of MAGI2 and the proteins involved in the PI3K/AKT signaling pathway.

    Results Compared with MCF-7 cells, MCF-7/ADR cells had a significant increase in the expression of MAGI2 (t=19.902,P<0.05). The si-MAGI2 inhibited the proliferation of MCF-7/ADR cells, promoted the apoptosis of these cells (t=4.027-24.651,P<0.05), and reduced the levels of phosphorylated PI3K and AKT protein (t=18.266,19.117;P<0.05).

    Conclusion MAGI2 may promote the proliferation and inhibit the apoptosis of MCF-7/ADR cells by regulating the PI3K/AKT signaling pathway.

    [KEY WORDS]MAGI2; breast cancer drug-resistant cells; cell proliferation; cell apoptosis; PI3K/AKT signaling pathway

    乳癌是女性肿瘤中死亡率较高的癌症之一,目前临床上常采用手术切除、放化疗等治疗手段,但是仍会出现治疗效果不佳、复发等不良情况[1-2]。阿霉素是化疗常用的治疗药物之一,在化疗过程中容易产生耐药性,严重影响病人的治疗效果[3-6]。研究结果显示,膜相关鸟苷酸激酶转化蛋白2(MAGI2)可通过结合于第10号染色体同源缺失性磷酸酶-张力蛋白(PTEN)从而调控肿瘤细胞增殖、凋亡等[7]。MAGI2被证实在乳癌细胞中发挥重要的调控作用,但对乳癌耐药细胞的研究相对较少。因此,本实验通过检测MAGI2在人乳癌细胞MCF-7及阿霉素耐药细胞MCF-7/ADR中的表达量,并通过小干扰RNA(siRNA)下调其 MCF-7/ADR细胞中的表达量,观察其对细胞增殖、凋亡的影响,为提高乳癌耐药细胞的分子靶向治疗效果提供实验基础。

    1 材料与方法

    1.1 实验材料

    人乳癌细胞MCF-7购自美国模式菌种收集中心,胎牛血清购自美国HyClone公司,DMEM培养基购自美国Gibco公司,Lipofectamine 2000购自美国Invitrogen公司,细胞计数试剂盒(CCK-8)购自日本DOJINDO公司;流式细胞术检测试剂盒购自杭州联科生物技术股份有限公司,siRNA NC质粒、siRNA MAGI2质粒购自上海吉玛制药技术有限公司,兔抗MAGI2、兔抗磷脂酰肌醇-3激酶(PI3K)、兔抗丝苏氨酸蛋白激酶(AKT)抗体、兔抗磷酸化PI3K(p-PI3K)、兔抗磷酸化AKT(p-AKT)、兔抗甘油醛-3-磷酸脱氢酶(GAPDH)购自美国Abcam公司。流式细胞仪、酶标仪购自美国BD公司。

    1.2 实验方法

    1.2.1 细胞培养 MCF-7及MCF-7/ADR细胞置于DMEM培养基中孵育,加入体积分数0.10胎牛血清。为维持MCF-7/ADR细胞的耐药性,额外在培养基中加入75 mg/L阿霉素。培养条件为体积分数0.05 CO2、37 ℃,每2 d更换1次培养基,加入胰蛋白酶按1∶3比例传代。

    1.2.2 细胞转染 选取对数期的MCF-7/ADR细胞,将其随机分为si-NC组、si-MAGI2组。si-NC组和si-MAGI2组根据Lipofectamine 2000说明书将siRNA NC质粒和siRNA MAGI2质粒分别转染入MCF-7/ADR细胞,继续培养48 h。

    1.2.3 qPCR实验 按照TRIzol试剂盒说明书提取各组细胞的总RNA,并检测其浓度和纯度,采用逆转录试剂盒合成cDNA,最后进行PCR扩增。以GAPDH作为内参照,通过Bio-Rad PCR系统分析MAGI2的表达水平。所用引物及其序列见表1。

    1.2.4 CCK-8实验 收集1×105个MCF-7/ADR细胞,根据1.2.2的方法进行转染,培养48 h,接种至96孔板,分别培养24、48、72 h,每孔加入10 μL的CCK-8工作液,孵育2~3 h,在酶标仪490 nm波长处检测吸光度值(A值)。

    1.2.5 蛋白质印迹法(Western blot)实验 收集MCF-7/ADR细胞,加入RIPA裂解液(含10 g/L的PMSF),4 ℃孵育30 min,提取细胞总蛋白,与适量缓冲液混匀,100 ℃变性10 min。吸取20 μg蛋白依次加入上样孔,通过100 g/L十二烷基硫酸钠-聚丙烯酰胺凝胶电泳后,将目的蛋白转移至PVDF膜上,放置50 g/L封闭液孵育1 h,将PVDF膜转移至装有加入MAGI2抗体(1∶1 000)、PI3K(1∶2 000)、AKT(1∶10 000)、p-PI3K(1∶5 000)、p-AKT(1∶1 000)溶液中,4 ℃过夜,加入二抗(1∶5 000)孵育60 min,显影、曝光,比较MAGI2和GAPDH蛋白灰度值比值。

    1.2.6 流式细胞术实验 收集MCF-7/ADR细胞,加200 μL 磷脂酰结合蛋白V-FITC/碘化丙啶工作液,37 ℃孵育15 min,流式细胞儀检测其凋亡率。

    1.3 统计学处理

    采用SPSS 22.0统计学软件进行分析。计量资料结果以±s表示,两组均数比较采用t检验。以P<0.05表示差异具有显著性。

    2 结? 果

    2.1 MAGI2在MCF-7及MCF-7/ADR细胞表达

    MAGI2在MCF-7和MCF-7/ADR细胞中的表达量分别为1.000±0.075和2.136±0.118。与MCF-7细胞相比,MAGI2在MCF-7/ADR细胞中的表达量增加,差异具有统计学意义(t=19.902,P<0.05)。见图1。

    2.2 沉默MAGI2对MCF-7/ADR细胞MAGI2蛋白表达和细胞增殖影响

    与si-NC组相比,si-MAGI2组MCF-7/ADR细胞中MAGI2蛋白表达量明显降低,差异有显著性(t=20.175,P<0.05);si-MAGI2组MCF-7/ADR细胞增殖明显抑制,差异具有统计学意义(t=2.129~6.167,P<0.05)。见图2、表2。

    2.3 沉默MAGI2对MCF-7/ADR细胞凋亡影响

    si-NC组和si-MAGI2组MCF-7/ADR细胞的凋亡率分别为(5.236±0.479)%和(27.423±2.152)%。与si-NC组相比,沉默MAGI2可促进MCF-7/ADR细胞凋亡,差异具有统计学意义(t=24.651,P<0.05)。

    2.4 沉默MAGI2对PI3K/AKT信号通路相关蛋白表达影响

    结果显示,与si-NC组相比,沉默MAGI2对MCF-7/ADR细胞中总PI3K蛋白水平及总AKT蛋白水平均无明显影响,但可明显降低p-PI3K蛋白和p-AKT蛋白的表达量,差异具有统计学意义(t=18.266、19.117,P<0.05)。见图3、表3。

    3 讨? 论

    乳癌是一种女性常见恶性肿瘤[8-9]。化疗是一种常用的乳癌治疗手段,其中阿霉素是临床常用的化疗药物[10-11]。MAGI2是膜相关鸟苷酸激酶家族的成员之一,含有1 227个氨基酸残基,具有多个结构域,能够与相应的配体结合从而参与细胞的增殖、凋亡等过程。近年来的研究证实,MAGI2参与多种癌症的发生发展过程。例如,MAGI2在胰腺癌组织中表达量异常,与临床病理特征如分期、复发等相关[12]。有研究表明,MAGI2可作为miR-487a的靶基因参与乳癌细胞的侵袭、迁移、上皮细胞间充质转化等过程,在乳癌组织生长以及转移过程中发挥重要的调控作用[13],这说明MAGI2可以作为乳癌临床诊断的潜在标志物。本研究结果显示,MAGI2蛋白在MCF-7/ADR细胞中较MCF-7表达量上调,而下调MAGI2蛋白表达水平可抑制MCF-7/ADR细胞增殖、诱导其凋亡,表明MAGI2可通过促进乳癌细胞增殖并抑制其凋亡,增强其阿霉素耐药性。

    研究表明,MAGI2含有与PTEN蛋白具有高亲和力的结构域,通过特异性募集、结合于PTEN,促进PTEN蛋白的稳定性表达[7],PTEN可参与多种肿瘤的发生与发展,例如前列腺癌、口腔癌、乳癌等[14-16]。PTEN主要通过影响PI3K/AKT等信号通路的活性,参与肿瘤细胞的生物学特性[17-20]。研究显示,PI3K/AKT可以参与多种肿瘤细胞的增殖、凋亡等[21-22],影响多种肿瘤的病理进展过程,如卵巢癌、结肠癌、乳癌等[23-24],与乳癌、非小细胞肺癌等肿瘤的耐药性密切相关[25-28]。LI等[25]研究结果显示,si-HOTAIR通过抑制PI3K/AKT/mTOR信号通路的表达降低乳癌细胞对阿霉素的抗性。本文研究结果显示,下调MAGI2对总的PI3K蛋白、AKT蛋白水平均无显著的影响,但可明显降低p-PI3K蛋白、p-AKT蛋白水平,表明下调MAGI2可能是通过特异性结合于PTEN,进而影响PI3K/AKT信号通路的活化水平,从而调控乳癌细胞的耐药性。

    综上所述,MAGI2基因在乳癌阿霉素耐药细胞MCF-7/ADR中表达量增加;下调MAGI2基因可能通过影响PI3K/AKT信号通路相关蛋白的活性水平,从而抑制耐药细胞增殖,诱导其凋亡,这为耐药细胞的分子靶向治疗提供理论依据。未来会进一步在多株耐药细胞系、动物模型以及临床样本中进一步探究MAGI2调控乳癌细胞耐药性的作用以及机制。

    [参考文献]

    [1]BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].? CA: A Cancer Journal for Clinicians, 2018,68(6):394-424.

    [2]魏薇,张增梅,赵海运,等. 射线防护在术中放疗联合乳腺癌保乳术中应用效果观察[J].? 郑州大学学报(医学版), 2018,53(5):671-674.

    [3]BOLANDGHAMAT POUR Z, NOURBAKHSH M, MOUSAVIZADEH K, et al. Suppression of nicotinamide phospho-ribosyltransferase expression by miR-154 reduces the viability of breast cancer cells and increases their susceptibility to doxorubicin[J].? BMC Cancer, 2019,19(1):1027.

    [4]LIN S, YU L, SONG X, et al. Intrinsic adriamycin resistance in p53-mutated breast cancer is related to the miR-30c/FANCF/REV1-mediated DNA damage response[J].? Cell death & disease, 2019,10(9):1-15.

    [5]GAO X T, WANG M, ZHANG Y Y, et al. MicroRNA-16 sensitizes drug-resistant breast cancer cells to Adriamycin by targeting Wip1 and Bcl-2[J].? Oncology Letters, 2019,18(3):2897-2906.

    [6]YUAN S J, XU Y H, WANG C, et al. Doxorubicin-polygly-

    cerol-nanodiamond conjugate is a cytostatic agent that evades chemoresistance and reverses cancer-induced immunosuppression in triple-negative breast cancer[J].? Journal of Nanobiotechnology, 2019,17:110.

    [7]WU X, HEPNER K, CASTELINO-PRABHU S, et al. Evidence for regulation of the PTEN tumor suppressor by a membrane-localized multi-PDZ domain containing scaffold protein MAGI-2[J].? PNAS, 2000,97(8):4233-4238.

    [8]魏雪菲,許守林,冯雪凤. 血清肿瘤标记物在乳腺癌临床分期中的诊断价值[J].? 实用临床医药杂志, 2017,21(9):227-228.

    [9]蒋雪梅,权毅. 上调miRNA-27a-3p对乳腺癌MCF-7细胞增殖、侵袭和迁移能力的影响[J].? 郑州大学学报(医学版), 2019,54(2):279-283.

    [10]CHRISTOWITZ C, DAVIS T, ISAACS A, et al. Mechanisms of doxorubicin-induced drug resistance and drug resis-

    tant tumour growth in a murine breast tumour model[J].? BMC Cancer, 2019,19(1):757.

    [11]JIN X X, WEI Y Z, LIU Y S, et al. Resveratrol promotes sensitization to Doxorubicin by inhibiting epithelial-mesenchymal transition and modulating SIRT1/β-catenin signaling pathway in breast cancer[J].? Cancer Medicine, 2019,8(3):1246-1257.

    [12]DAVID S N, ARNOLD EGLOFF S A, GOYAL R, et al. MAGI2 is an independent predictor of biochemical recurrence in prostate cancer[J].? The Prostate, 2018,78(8):616-622.

    [13]MA M T, HE M, JIANG Q, et al. MiR-487a promotes TGF-β1-induced EMT, the migration and invasion of breast cancer cells by directly targeting MAGI2[J].? International Journal of Biological Sciences, 2016,12(4):397-408.

    [14]WEI L, WANF J Q, ZHANG Y H, et al. Expressions and significance of tumor suppressor gene PTEN and p53 in prostate cancer[J].? Biomedical Research, 2017, 28(15):6730-6734.

    [15]ASOUDEH-FARD A, BARZEGARI A, DEHNAD A, et al. Lactobacillus plantarum induces apoptosis in oral cancer KB cells through upregulation of PTEN and downregulation of MAPK signalling pathways[J].? Bio Impacts, 2017,7(3):193-198.

    [16]LI S T, SHEN Y W, WANG M Y, et al. Loss of PTEN expression in breast cancer: association with clinicopathological characteristics and prognosis[J].? Oncotarget, 2017,8(19):32043-32054.

    [17]PREZ-RAMREZ C, CA ADAS-GARRE M, MOLINA M ,

    et al. PTEN and PI3K/AKT in non-small-cell lung cancer[J].? Pharmacogenomics, 2015,16(16):1843-1862.

    [18]JING X P, CHENG W W, WANG S Y, et al. Resveratrol induces cell cycle arrest in human gastric cancer MGC803 cells via the PTEN-regulated PI3K/Akt signaling pathway[J].? Oncology Reports, 2016,35(1):472-478.

    [19]NADERALI E, VALIPOUR B, KHAKI A A, et al. Positive effects of PI3K/Akt signaling inhibition on PTEN and P53 in prevention of acute lymphoblastic leukemia tumor cells[J].? Advanced Pharmaceutical Bulletin, 2019,9(3):470-480.

    [20]LI B, ZHANG J K, SU Y, et al. Overexpression of PTEN may increase the effect of pemetrexed on A549 cells via inhibition of the PI3K/AKT/mTOR pathway and carbohydrate metabolism[J].? Molecular Medicine Reports, 2019,20(4):3793-3801.

    [21]黄勤,毛慧慧. miR-146干预PI3K/Akt信號通路对类风湿关节炎滑膜成纤维细胞的影响[J].? 河北医科大学学报, 2019,40(6):650-653,657.

    [22]CHEN H, TANG X C, LIU T, et al. Zingiberene inhibits in vitro and in vivo human colon cancer cell growth via autophagy induction, suppression of PI3K/AKT/mTOR Pathway and caspase 2 deactivation[J].? J BUON, 2019,24(4):1470-1475.

    [23]MABUCHI S, KURODA H, TAKAHASHI R, et al. The PI3K/AKT/mTOR pathway as a therapeutic target in ovarian cancer[J].? Gynecologic Oncology, 2015,137(1):173-179.

    [24]LEE J X, LOH K, YAP Y S. PI3K/AKT/mTOR inhibitors in breast cancer[J].? Cancer Bbiology & Medicine, 2015,12(4):342-354.

    [25]LI Z X, QIAN J, LI J, et al. Knockdown of lncRNA-HOTAIR downregulates the drug-resistance of breast cancer cells to doxorubicin via the PI3K/AKT/mTOR signaling path-

    way[J].? Experimental and Therapeutic Medicine, 2019,18(1):435-442.

    [26]CHI Y Y, XUE J Y, HUANG S, et al. CapG promotes resis-

    tance to paclitaxel in breast cancer through transactivation of PIK3R1/P50[J].? Theranostics, 2019,9(23):6840-6855.

    [27]CHEN K, ABUDUWUFUDER A, ZHSNG H, et al. SNHG7 mediates cisplatin-resistance in non-small cell lung cancer by activating PI3K/AKT pathway[J].? Eur Rev Med Pharmacol Sci, 2019, 23(16):6935-6943.

    [28]HUANG Q, WU Y Y, XING S J, et al. Effect of miR-7 on resistance of breast cancer cells to adriamycin via regulating EGFR/PI3K signaling pathway[J].? Eur Rev Med Pharmacol Sci, 2019,23(12):5285-5292.

    (本文編辑 于国艺)