基于灰度变化方向的指静脉特征检测算法
熊显名 唐绮雯 张文涛
关键词: 指静脉; 特征提取; 灰度变化; 方向检测; 四点法; 近红外; 生物识别
中图分类号: TN911.73?34; TP391.4 ? ? ? ? ? ? ? ? 文献标识码: A ? ? ? ? ? ? ? ? 文章编号: 1004?373X(2019)03?0061?04
Abstract: The current feature extraction method of figure vein has the problems of inaccurate line extraction, fractured characteristic texture, excessive noise and complicated extraction process. The near?infrared photoelectric transmissive vein acquisition method is used to collect the finger vein image. A four?point method is designed in the preprocessing stage to rapidly separate the vein region of the image from the background area. By analyzing the gray scale feature of the vein, the four?directional feature template detection operator perpendicular to the vein is designed to perform the feature extraction and experiment for the finger vein. The proposed algorithm can extract the feature line of vein quickly, and avoid the fracture problem of feature line, has simple extraction process and high efficiency, and the extraction speed of single vein line feature can reach up to 1.14 ms.
Keywords: finger vein; feature extraction; gray scale change; direction detection; four?point method; near infrared; biological recognition0 ?引 ?言
手指静脉作为人体内部生物特征,具有稳定性和唯一性,无生命迹象手指因血液凝固无法检测静脉。指静脉认证[1]作为一种非接触活体识别具有更高的安全性和抗伪率,在近年来的生物识别研究[2]领域中引起广泛重视。
由于指静脉图像采集装置[3]的特殊性,使指静脉图像在采集过程中易受诸多因素的影响,如手指旋转、移动、压力、传感器噪声等,造成采集静脉图像质量低,静脉特征提取[4?5]困难等问题。目前,常用的静脉纹路提取与分割算法分为基于阈值图像分割[6?7]和利用数学工具进行灰度分割[8]。文献[9]利用阈值图像法对手背静脉图像进行分割,此方法能够对信噪比低、光照不均的图像有较好的分割效果,缺点是容易丢失边界信息,后期需进行严谨滤波除噪。文献[10]提出重复线性跟踪法,此方法能够从不清晰静脉图像中提取出靜脉纹路,但提取过程复杂,不适用于较细静脉提取。
本文提出一种基于灰度变化方向的特征检测方法对手指静脉纹路进行提取,设计四点法对图像静脉区域与背景进行快速分离,利用灰度变化方向特征设计四方向模板算子对分离后图像进行静脉纹路提取,提取速度快且能有效克服纹路断裂及图像质量低带来的无法提取或提取结果不理想等问题。
图8a)~图8d)分别为本文选取的四个手指样本用本文预处理方法得到的指静脉预处理图,图8e)~图8h)为以上四个样本对应使用本文算法提取静脉特征的效果图。由图像可以看出,尽管预处理阶段存在光照不均、静脉分支不明显现象,但利用本文算法依然能得出有效且准确的静脉纹路。
4 ?结 ?语
本文提出一种基于灰度变化的方向特征检测算法对手指静脉纹路进行特征提取。首先设计了四点法对图像的静脉区域与背景区域进行快速分离,再利用灰度变化方向特征设计四方向模板检测算子对分离后静脉区域进行纹路分割与提取,提取速度快且能有效克服由于图像质量低带来的静脉无法提取或提取结果不理想等问题,降低了纹路特征断裂问题,提取单幅图像速度为1.14 ms,优于传统静脉特征提取算法。编写了基于VS2010平台+OpenCV软件操作平台进行处理,验证了算法提取静脉特征的有效性。
参考文献
[1] 秦斌.手静脉身份识别技术[J].现代电子技术,2011,34(4):169?174.
QIN Bin. Technique of hand vein identification [J]. Modern electronics technique, 2011, 34(4): 169?174.
[2] 寒冰,李彬.生物特征识别技术的应用与发展新趋势[J].中国安防,2010(8):40?43.
HAN Bing, LI Bin. Application and development trend of biometrics [J]. China security, 2010(8): 40?43.
[3] 黄建元,赵新荣,张长顺,等.基于CMOS成像器件的手指静脉图像采集方法及装置[J].红外技术,2009,31(1):51?56.
HUANG Jianyuan, ZHAO Xinrong, ZHANG Changshun, et al. A method and device for collecting finger vein image based on CMOS imaging device [J]. Infrared technology, 2009, 31(1): 51?56.
[4] LEE E C, LEE H C, PARK K R. Finger vein recognition using minutia?based alignment and local binary pattern?based feature extraction [J]. International journal of imaging systems and technology, 2009, 19(3): 179?186.
[5] 王璐,张文涛.人体手掌静脉图像采集系统研究[J].激光与红外,2013,43(4):404?408.
WANG Lu, ZHANG Wentao. Study on the collection system of human palm vein image [J]. Laser and infrared, 2013, 43(4): 404?408.
[6] 张晴,林家骏.超像素和阈值分割相结合的显著目标检测算法[J].现代电子技术,2016,39(14):95?99.
ZHANG Qing, LIN Jiajun. Significant target detection algorithm based on superpixel and threshold segmentation [J]. Modern electronics technique, 2016, 39(14): 95?99.
[7] 林喜荣,庄波,苏晓生,等.人体手背血管图像的特征提取及匹配[J].清华大学学报(自然科学版),2003(2):164?167.
LIN Xirong, ZHUANG Bo, SU Xiaosheng, et al. Characteristics extraction and matching of human hand dorsal vascular images [J]. Journal of Tsinghua University (science and technology), 2003(2): 164?167.
[8] 张万涛,李维国.利用曲率信息的图像分割改进模型[J].中国图象图形学报,2011,16(8):1385?1392.
ZHANG Wantao, LI Weiguo. An improved image segmentation model using curvature information [J]. Journal of image and graphics, 2011,16(8): 1385?1392.
[9] 王科俊,丁宇航,庄大燕,等.手背静脉图像阈值分割[J].自动化技术与应用,2005(8):19?22.
WANG Kejun, DING Yuhang, ZHUANG Dayan, et al. Threshold segmentation of the dorsal hand vein [J]. Automation technology and applications, 2005(8): 19?22.
[10] MIURA N, NAGASAKA A, MIYATAKE T. Extraction of finger?vein patterns using maximum curvature points in image profiles [J]. IEICE transactions on information and systems, 2007, 90(8): 1185?1194.
[11] 黎蔚,李继杰,陈家新,等.手掌静脉图像增强算法研究[J].微电子学与计算机,2010,27(7):237?241.
LI Wei, LI Jijie, CHEN Jiaxin, et al. Research on the algorithm of palm vein image enhancement [J]. Microelectronics and computers, 2010, 27(7): 237?241.
关键词: 指静脉; 特征提取; 灰度变化; 方向检测; 四点法; 近红外; 生物识别
中图分类号: TN911.73?34; TP391.4 ? ? ? ? ? ? ? ? 文献标识码: A ? ? ? ? ? ? ? ? 文章编号: 1004?373X(2019)03?0061?04
Abstract: The current feature extraction method of figure vein has the problems of inaccurate line extraction, fractured characteristic texture, excessive noise and complicated extraction process. The near?infrared photoelectric transmissive vein acquisition method is used to collect the finger vein image. A four?point method is designed in the preprocessing stage to rapidly separate the vein region of the image from the background area. By analyzing the gray scale feature of the vein, the four?directional feature template detection operator perpendicular to the vein is designed to perform the feature extraction and experiment for the finger vein. The proposed algorithm can extract the feature line of vein quickly, and avoid the fracture problem of feature line, has simple extraction process and high efficiency, and the extraction speed of single vein line feature can reach up to 1.14 ms.
Keywords: finger vein; feature extraction; gray scale change; direction detection; four?point method; near infrared; biological recognition0 ?引 ?言
手指静脉作为人体内部生物特征,具有稳定性和唯一性,无生命迹象手指因血液凝固无法检测静脉。指静脉认证[1]作为一种非接触活体识别具有更高的安全性和抗伪率,在近年来的生物识别研究[2]领域中引起广泛重视。
由于指静脉图像采集装置[3]的特殊性,使指静脉图像在采集过程中易受诸多因素的影响,如手指旋转、移动、压力、传感器噪声等,造成采集静脉图像质量低,静脉特征提取[4?5]困难等问题。目前,常用的静脉纹路提取与分割算法分为基于阈值图像分割[6?7]和利用数学工具进行灰度分割[8]。文献[9]利用阈值图像法对手背静脉图像进行分割,此方法能够对信噪比低、光照不均的图像有较好的分割效果,缺点是容易丢失边界信息,后期需进行严谨滤波除噪。文献[10]提出重复线性跟踪法,此方法能够从不清晰静脉图像中提取出靜脉纹路,但提取过程复杂,不适用于较细静脉提取。
本文提出一种基于灰度变化方向的特征检测方法对手指静脉纹路进行提取,设计四点法对图像静脉区域与背景进行快速分离,利用灰度变化方向特征设计四方向模板算子对分离后图像进行静脉纹路提取,提取速度快且能有效克服纹路断裂及图像质量低带来的无法提取或提取结果不理想等问题。
图8a)~图8d)分别为本文选取的四个手指样本用本文预处理方法得到的指静脉预处理图,图8e)~图8h)为以上四个样本对应使用本文算法提取静脉特征的效果图。由图像可以看出,尽管预处理阶段存在光照不均、静脉分支不明显现象,但利用本文算法依然能得出有效且准确的静脉纹路。
4 ?结 ?语
本文提出一种基于灰度变化的方向特征检测算法对手指静脉纹路进行特征提取。首先设计了四点法对图像的静脉区域与背景区域进行快速分离,再利用灰度变化方向特征设计四方向模板检测算子对分离后静脉区域进行纹路分割与提取,提取速度快且能有效克服由于图像质量低带来的静脉无法提取或提取结果不理想等问题,降低了纹路特征断裂问题,提取单幅图像速度为1.14 ms,优于传统静脉特征提取算法。编写了基于VS2010平台+OpenCV软件操作平台进行处理,验证了算法提取静脉特征的有效性。
参考文献
[1] 秦斌.手静脉身份识别技术[J].现代电子技术,2011,34(4):169?174.
QIN Bin. Technique of hand vein identification [J]. Modern electronics technique, 2011, 34(4): 169?174.
[2] 寒冰,李彬.生物特征识别技术的应用与发展新趋势[J].中国安防,2010(8):40?43.
HAN Bing, LI Bin. Application and development trend of biometrics [J]. China security, 2010(8): 40?43.
[3] 黄建元,赵新荣,张长顺,等.基于CMOS成像器件的手指静脉图像采集方法及装置[J].红外技术,2009,31(1):51?56.
HUANG Jianyuan, ZHAO Xinrong, ZHANG Changshun, et al. A method and device for collecting finger vein image based on CMOS imaging device [J]. Infrared technology, 2009, 31(1): 51?56.
[4] LEE E C, LEE H C, PARK K R. Finger vein recognition using minutia?based alignment and local binary pattern?based feature extraction [J]. International journal of imaging systems and technology, 2009, 19(3): 179?186.
[5] 王璐,张文涛.人体手掌静脉图像采集系统研究[J].激光与红外,2013,43(4):404?408.
WANG Lu, ZHANG Wentao. Study on the collection system of human palm vein image [J]. Laser and infrared, 2013, 43(4): 404?408.
[6] 张晴,林家骏.超像素和阈值分割相结合的显著目标检测算法[J].现代电子技术,2016,39(14):95?99.
ZHANG Qing, LIN Jiajun. Significant target detection algorithm based on superpixel and threshold segmentation [J]. Modern electronics technique, 2016, 39(14): 95?99.
[7] 林喜荣,庄波,苏晓生,等.人体手背血管图像的特征提取及匹配[J].清华大学学报(自然科学版),2003(2):164?167.
LIN Xirong, ZHUANG Bo, SU Xiaosheng, et al. Characteristics extraction and matching of human hand dorsal vascular images [J]. Journal of Tsinghua University (science and technology), 2003(2): 164?167.
[8] 张万涛,李维国.利用曲率信息的图像分割改进模型[J].中国图象图形学报,2011,16(8):1385?1392.
ZHANG Wantao, LI Weiguo. An improved image segmentation model using curvature information [J]. Journal of image and graphics, 2011,16(8): 1385?1392.
[9] 王科俊,丁宇航,庄大燕,等.手背静脉图像阈值分割[J].自动化技术与应用,2005(8):19?22.
WANG Kejun, DING Yuhang, ZHUANG Dayan, et al. Threshold segmentation of the dorsal hand vein [J]. Automation technology and applications, 2005(8): 19?22.
[10] MIURA N, NAGASAKA A, MIYATAKE T. Extraction of finger?vein patterns using maximum curvature points in image profiles [J]. IEICE transactions on information and systems, 2007, 90(8): 1185?1194.
[11] 黎蔚,李继杰,陈家新,等.手掌静脉图像增强算法研究[J].微电子学与计算机,2010,27(7):237?241.
LI Wei, LI Jijie, CHEN Jiaxin, et al. Research on the algorithm of palm vein image enhancement [J]. Microelectronics and computers, 2010, 27(7): 237?241.