网站首页  词典首页

请输入您要查询的论文:

 

标题 物联网技术在智能仓储环境监控中的应用
范文 单彬 毛丹辉 王勇 王仁芳
摘 要:智能仓储是现代物流业发展的重要方向;物联网技术的发展和应用,为智能仓储的发展提供了强有力的技术支持。智能仓储的一个重要特征是可以根据产品的特性提供良好的、可控制的存储环境,并保证产品的有效和安全。文章对物联网技术在粮食仓储、医药仓储、棉花仓储等方面的应用进行阐述,并提出将各类功能性仓储集合于综合性智能仓储之中的技术方案,探讨了基于物联网技术建立信息化、标准化、智能化、集约化的综合性智能仓储的现实意义。
关键词:现代物流;物联网技术;智能仓储
中图分类号:F406.5 文献标识码:A
Abstract: Intelligent warehousing is an important direction in modern logistics industry. The applications of technologies of the internet of things(IoT)provide powerful technical support for the development of intelligent warehousing. An important feature of intelligent warehousing is that it can provide a good storage environment and make the stored products safe and effective according to the characteristics of the products. This article elaborates the applications of IoT technologies in food storage, medicine warehouse, cotton storage. In the meanwhile integrating all kinds of functional storage into comprehensively intelligent warehousing is a technical proposal and establishing an informational, standardized, intelligent and intensive warehousing by using IoT technologies is realistic.
Key words: modern logistics; internet of things; intelligent warehousing
0 引 言
近年來,我国现代物流业不断发展,大部分物流业是传统物流业融入信息化技术[1],少数采用先进的自动化和物联网技
术[2],还有小部分保持着传统的运输方式[3],总体呈现为中间大两头小的橄榄形。全国“十三五”规划中指出现代物流业要加强物流基础设施的建设,大力发展第三方物流和绿色物流、冷链物流、城乡配送。2016年7月份,国务院总理李克强提出以先进的信息技术与物流深度融合来促进物流业的转型升级。总体的方向是让物流业向着先进化、智能化发展。仓储是物流业中不可或缺的环节也是对基础设施要求较高的部分,在供应链中起到了承接上下游的作用,所以物流的智能化也要求者仓储向智能化发展[4]。本文着眼于仓储中的环境部分,探讨基于物联网技术建立信息化、标准化、智能化、集约化的综合性智能仓储的技术方案与应用意义。
1 智能仓储及物联网技术概述
依托于物联网技术的智能仓储,能够有效提高仓储管理的效率和安全,从而促进现代物流的发展,体现现代物流的实用性和先进性。
智能仓储管理对象基本上包括仓、储、物和环境四项。仓是指仓储活动所需的场地、设施、设备;储是指仓储业务及其管理活动,包括出入库业务、出库业务、移库业务、仓储规划、寻址管理和货位管理等;物是指对仓库内商品和工作人员,实现货、人的监管。环境是指人、设备和货物的活动、存放环境因素[5]。智能仓储常采用物联网技术、自动控制技术、智能机器人技术、大数据挖掘技术、云计算技术、智能信息管理技术等先进的技术来实现其对四个对象的管理控制。本文主要探讨的是物联网技术在智能仓储环境监控方面的问题。
物联网从狭义上可指连接物品与物品间网络,用来实现对物品的智能化识别和管理;而广义上的物联网则可以看作是信息空间与物理空间的融合,将一切事物数字化、网络化,在物品之间、物品与人之间、人与现实环境之间实现高效信息交互方式,并通过新的服务模式使各种信息技术融入社会行为,是信息化在人类社会综合应用达到的更高境界[6]。国际电联报告提出物联网主要有四个关键性的应用技术:RFID、传感器、智能技术以及纳米技术[7]。这些先进的技术都是为了使人与物之间更紧密的联系,方便人们的生活和工作,是促进社会生产发展的动力。
2 物联网技术在仓储中的应用研究
物联网技术在各类仓储的环境监控中都有着应用,本文着重综述了物联网技术在粮食仓储、医药仓储、棉花仓储环境监控中的应用。
2.1 粮食仓储
物联网技术可以应用于粮食的多个方面:粮食物流、粮食仓储、粮食信息跟踪等[8]。物联网技术在粮食仓储中的应用是本文关注的重点,尤其是对于实时监测粮食的环境,并对环境情况进行反馈控制。
粮食存储在仓库之中,受气候、通风和环境等外界因素的影响,粮食仓库的温度和湿度都会发生变化,从而影响了粮仓中气体、微生物的浓度或数量,进而造成粮食的品质下降。针对这一情况,以粮仓和粮食的温度和湿度作为主要的监测目标并利用温度传感器、湿度传感器、气体传感器、虫害传感器等传感系统对其进行采集。根据采集到的信息进行数据分析,找出关键影响因素,制定决策方案并根据方案自动调节粮食仓储的环境条件,包括自动控温、自动控湿、自动通风以及自动熏蒸等,其简略流程如图1所示。在所示的整个流程中,关键技术主要有传感器技术、传输技术、信息处理技术、智能控制技术等。传感器的选择要满足仓储环境监测的需求,并且保证所采集信息的可靠性;传输技术保证信息传输的及时和准确,如蓝牙、Zigebee、Wi-Fi等无线传输技术;信息处理技术主要是处理大量的信息,提取出对决策控制有用的信息;智能控制技术根据决策的信息智能控制通风、熏蒸、温度和湿度设备的开启或关闭。
在“大蒜之乡”山东省济宁市金乡县建立的全国首个物联网冷库综合监控系统就是一个成功的应用。传统的大蒜仓储环境监控主要通过人工实时监控的方式来进行温度调整,耗费了大量的人力、物力,却无法保证环境监控的精度。由于环境监精度的问题,大蒜出现低温冻坏或高温生芽腐烂的情况时有发生,而且无法及时判断仓库里二氧化碳的浓度含量,会出现因二氧化碳浓度过高造成工作人员窒息的情形。利用物联网技术可以有效改善上面出现的问题。仓库内温度、湿度和二氧化碳浓度等重要的指标信息通过传感器来进行监测,将监测到的数据信息通过无线网络传输到控制中心,控制中心通过与系统预设的温度、湿度和二氧化碳浓度进行比较分析,再通过控制决策中心的指令,自动实现对温度设备和排风系统的控制。同时,还可以随时将仓库内温度、湿度和二氧化碳数值等报警短信发送到手机上,有效实现无人值守、手机端24小时监控,在节约了管理控制成本的同时,也提高仓储管理水平与环境监控的准确率[9]。
粮食仓储环境监控信息感知主要是传感器的使用,利用收集的信息分析控制环境。基于ZigBee技术等无线网络技术通信方式的系统得到广泛应用,使得数据信息的传输更加快速、安全、可靠[10-11]。多传感器融合、无线远程监控等技术的应用研究,也在不断提高粮食仓储环境监测的适用性和稳定性[12-13]。智能自动通风技术可以参考各个参数间的关系,例如温度、湿度等环境参数,通过数据分析找到参数的最佳点,利用智能化控制通风系统,实现仓储环境的控制[14]。气调储粮技术主要监测氧气、二氧化碳等气体数据,调整控制气体浓度,在仓储环境内形成一个低氧、高二氧化碳或者高二氧化氮的仓储环境,从而达到抑制粮食呼吸、杀虫抑菌、延长粮食存储时间的目的[15]。
2.2 医药仓储
2016年3月的山东疫苗事件引起社会极大反响,经食药监管部门核查,两名犯罪嫌疑人经营的疫苗虽为正规厂家生产,但并没有未按照国家相关法律规定运输、保存,而且脱离了2~8℃的恒温冷链,难以保证疫苗的品质和使用效果,注射后甚至可能产生副作用。这一事实说明了医药存储环境的敏感性,这就需要冷链不断流来保证储藏温度。无论对常温或冷链物流体系,由于仓储是其每个重要物流节点的衔接点,不仅涉及生产、储存、运输、销售等环节的启承,也集中了物流体系中的各关键节点间的主要矛盾[16]。本文关注的是医药冷链物流中的仓储环境监测控制。
物联网技术在医药仓储环境监测控制中有如下特点:(1)通过RFID技术,对医药品进行识别,获取药品的信息,根据取得信息确定此类药物的存储温度;(2)通过相应的传感技术感知仓储周围的环境变化,取得周围环境的信息;(3)获取的医药储藏的需求温度和当前周围环境信息的数据,根据数据的变化智能的控制环境,实现医药品可以在自己所需的温度下储藏。基于Agent的环境控制基本结构图如图2所示,Agent通过传感器获取医药存储环境的数据信息,通过自身信息处理,对环境信息的变化做出快速响应,再通过效应器作用于医药仓储环境,从而达到调节控制环境的目的。Agent可以确保不传输有误信息,它的学习能力也让它能够根据环境的变化调节自己,从而满足当前所设定的需求。
传统的医药品存放环境监控都是通过人工监控,人工监管控制无法保证医药品存储环境的可靠性。传统医药环境监控的自动化水平低,不能对医药环境实行自动、实时的监控以及对环境的自动调节控制,从而不能及时发现当前环境数据是否超过预设的数值,造成医药品脱离合适的环境,极易造成损失。基于Agent的環境信息监测系统的研究最近几年十分活跃,该系统融合了环境监测和Agent等学科的最新成果[17]。将物联网技术和Agent等技术的融合,能快速、可靠地获取医药仓储环境的信息,并智能化的自我调节控制环境达到预设值,提升了医药仓储环境监控的自动化、信息化和智能化。
无线射频识别(RFID)技术的应用研究,将数据通过带有传感器的RFID传送至后台处理,利用程序对环境数据进行检测和处理,实现对温湿度等环境信息数据的自动化监测[18-19]。利用无线传感器网络(WSN)和多传感器技术可以获得更多的感知信息,实现对环境信息更加准确、可靠、高效的监控[20-21]。将RFID与WSN技术融合起来组成WSID网络,改善了通信距离、定位追踪、数据融合等技术,不仅提高了监测的时效性和准确性,还极大的降低了成本[22-23]。将物联网RFID技术与基于多Agent的管理系统以及云计算应用相结合,利用Agent的智能性与其他的Agent共同协作完成对应的任务,可以提高管理的信息化以及管理控制的水平和效率[24-25]。
2.3 棉花仓储
中国已成为了全世界最大的棉花生产和消费国家,棉花制品在我国每个家庭中必然存在。棉花是被认定为易燃物的天然纤维,当前有大量棉花储备在物流仓库中,一旦点燃,大火将会在几秒钟内迅速扩张到几百平方米,造成难以估计的损失[26]。除去建筑和管理角度的考虑,本文主要是对棉花仓储的环境监控以及相应防火措施进行分析。
由于棉花易燃、阴燃、自燃的特殊性质,对于棉花仓储的存储的高要求和特殊的防火高要求就更加必要。基于棉花的特殊性质,棉花仓储的温度应保持低于30℃,最大不能高于35℃且相对湿度不超过70%。
通过物联网技术中的传感技术,采用温度传感器和湿度传感器感知仓储环境。而棉花起火最初仅仅是在表层燃烧蔓延,一般都有烟雾、高温和火光,因此采用烟雾传感器、感温传感器和光辐射传感器器等作为防火探测感知器件。利用Zigbee和单片机或其他网络信息技术采集到环境和防火数据,并对数据进行分析处理,来控制报警、防火、灭火等系统。简略的方案如图3所示,棉花仓储整体方案中,由于棉花防火的区域较广,需要接受大量的传感器的数据,还需要长时间的监控并且保证传输信息的及时性,那么采用无线传输技术中的Zigbee技术就是一种很好的方案。Zigbee技术优势:省电,普通两节电池就能使用6个月到2年左右的时间;时延短,可以在ms时间里完成激活和通信;可靠,采用避免碰撞的策略,避免发送数据时候的冲突;网络容量大,一个Zigbee网络可以容纳200多个设备。
传统火灾探测器采用悠闲的通行方式,布线复杂、可靠性低、通信方式拓展性差,且线路容易老化或遭到磨损、腐蚀,有比较高的故障发生率和误报率。采用ZigBee技术构建无线传感网络,将其应用到火灾自动报警系统中的方案,低成本、低功耗的特点克服了有线传感网络的局限性,且其随时可以移动以及添加的特性大大方便了火灾自动报警系统的调整、更新,提高了现有火灾自动报警系统的灵活性。同时增加的移动定位的功能,方便了火灾救援和灭火工作,特别是火灾现场的浓烟密布,无法看清现场的情况,消防工作人员通过移动定位系统,可以与监测控制中心联系并快速确定自己所在方位和火灾的地点以及火灾现场的情况,有效提高了救援和灭火工作的效率[27-28]。
单一的传感器在测量火灾信息时会存在数据可能不完整以及片面的问题,为保证火灾判断的准确性,采用多传感器数据融合的技术,利用计算机技术和算法对信息进行多方面处理分析,从而产生一个能够准确判断当前情况的新信息[29-31]。
3 综合性智能仓储的现实意义
从物联网技术在智能仓储环境控制中的应用中可以看出,大多数的应用都是针对某一具体的行业或某一种特殊产品,基本上是单对单的使用,例如是粮食仓储那么仅仅是用于粮食的存放,其他的不同货物基本就很少有能储藏到其中的。如果仓储存在大量多余的空间,就存在闲置和低利用率的问题,造成资源的浪费,物流的成本也很难降低。本文研究并提出了以物联网技术为核心实现多个功能仓储于一体的智能仓储的方案。
在常见的智能仓储环境控制中,温湿度这一环境参数都是关注的对象,防火报警也是仓储不能缺少的一块,将这两方面作为最基本的智能仓储环境参数。针对不同特性的商品可以添加其相应参数需求的环境检测模块,最理想的综合性智能仓储可以满足任意存储货物的需求,不同存储空间可以满足不同货物的存储环境需求,但这样的代价对现代物流来说是不可能承受的,因此可以考虑几类对于环境要求类似的货物来进行综合,达到任意仓储空间都能满足这几类货物的环境监控。例如粮食和水果这两类,都十分重视温湿度、气体浓度、微生物等环境因素,可以考虑两者的结合,将这两类所需要的所有环境监测传感器件安装在仓库,并且隔离出不同的仓储位置。这样在各个仓储位置都能存储这两类货物,并根据存储的货物进行监控设置,那么仓库的闲置的可能性就会降低。其基本的环境监控设置如图4所示。
随着现代物流的发展,综合性的智能仓储也能一步步前进,在不久的将来也许就可以實现一个智能仓储就可以满足绝大多数货物的存储环境监控,这样就能够极大的利用资源,降低物流成本。在实现综合性智能仓储的情况下,如果某一地区发生灾害,就可以选择离灾区最近智能仓储作为应急仓储,无论是水、食品、药物还是被子、帐篷等一系列的救援物资都能快速运入智能仓储保存并及时送入灾害地区,极大方便了不同救灾物资的运输,非常具有现实意义的。
4 总 结
综合性智能仓储的一个仓库可以满足多种货物的存放需求,利用物联网技术实现对不同货物的环境监控,根据监控的情况实时进行智能控制货物所处环境,满足了不同货物的存储,极大提高了仓储资源的利用率,降低物流为不同货物建立不同仓储的成本。仓储以综合性智能仓储为目标,体现出综合性智能仓储的标准化;物联网技术及其智能控制的引入和应用展现了综合性智能仓储的信息化和智能化;综合性智能仓储可以降低物流成本、提升资源利用率,集成了各类货物的存储,彰显了其集约化。
将针对某一具体的行业或某一种特殊产品的单一型智能型仓储升级为满足多方需求的综合性智能仓储,对于物流成本的降低和资源利用率的提升都具有现实意义。本文综述了三类仓储的环境监控情况,提出一种综合性智能仓储的简单方案,希望可以在前人对智能仓储的研究基础上进一步拓展研究的广度和深度。
参考文献:
[1] 吴景新. 论我国物流运输的现状及对策[J]. 黑龙江科技信息,2010(12):90.
[2] 高迎冬,李杰,张颖. 物联网技术在现代物流管理中的应用[J]. 物流技术,2012,31(11):175-177.
[3] 张乐乐,冯爱兰. 现代物流与传统物流的比较分析[J]. 物流技术,2005(7):25-27.
[4] 陈杰. 基于物联网的智能仓储管理系统研究[D]. 合肥:合肥工业大学(硕士学位论文),2015.
[5] 张仁彬. 基于物联网环境的仓储系统架构研究[D]. 郑州:郑州大学(硕士学位论文),2012.
[6] 孙其博,刘杰,黎羴,等. 物联网:概念、架构与关键技术研究综述[J]. 北京邮电大学学报,2010(3):1-9.
[7] International Telecommunication Union UIT. ITU Inter-net Reports 2005: The Internet of Things[Z]. 2005.
[8] 徐柏森. 仓储粮情监测物联网组网研究[D]. 郑州:河南工业大学(硕士学位论文),2012.
[9] 武晓钊. 物联网技术在仓储物流领域应用分析与展望[J]. 中国流通经济,2011(6):36-39.
[10] 刘楠嶓,王磊. 基于ZigBee技术的粮食温度监测系统的优化设计研究[J]. 粮油加工(电子版),2014(9):56-59.
[11] 王亿书. 基于无线传感器网络的粮情监测系统的设计与实现[J]. 计算机应用与软件,2012,29(8):110-114.
[12] 王锋,孔李军,艾英山. 粮情测控系统中多传感器信息融合技术的应用[J]. 农机化研究,2010(2):166-169.
[13] 张振声,刘献国,冯百联,等. 远程粮情无线监控系统应用报告[J]. 粮油仓储科技通讯,2011,27(5):7-9.
[14] 史钢强. 智能通风操作系统水分控制模型优化及程序设计[J]. 粮油食品科技,2013,21(5):109-113.
[15] 张来林,张采林,金文,等. 我国气调储粮技术的发展及应用[J]. 粮食与饲料工业,2011(9):20-23.
[16] 党培. 医药冷链物流仓储管理系统关键问题研究[D]. 西安:陕西科技大学(硕士学位论文),2015.
[17] 苏帅. 基于Agent技术的环境信息监测系统设计与实现[D]. 扬州:扬州大学(硕士学位论文),2014.
[18] 陈宇铮,汤仲品,倪云峰,等. 基于RFID的冷链物流监测系统的设计[J]. 计算机应用与软件,2013(2):263-265.
[19] K. R. Prasanna, M. Hemalatha. RFID GPS and GSM based logistics vehicle load balancing and tracking mechanism[J]. Procedia Engineering, 2012(30):726-729.
[20] 王希杰. 基于物联网技术的生态环境监测应用研究[J]. 传感器与微系统,2011(7):149-152.
[21] Jankovic, Olivera. WSN and M2M technology as support of logistics operations[J]. Put i Saobracaj, 2012,58(4):33-37.
[22] 李斌,李文鋒. WSN与RFID技术的融合研究[J]. 计算机工程,2008(9):127-129.
[23] Mirshahi, Shiva, Sener Uysal. Integration of RFID and WSN for supply chain intelligence system[J]. Computers and Artificial Intelligence, 2013(10):1-6.
[24] 董景全. 基于物联网和Multi-Agent的智能仓储管理系统[J]. 四川兵工学报,2013(10):52-54.
[25] Pavel, Burian. Multi-agent systems and cloud computing for controlling and managingchemical and food processes[J]. J. Chem. Chem. Eng, 2012(6):1121-1135.
[26] Wen-hui Ju. Study on Fire Risk and Disaster Reducing Factors of Cotton Logistics Warehouse Based on Event and Fault Tree Analysis[J]. Procedia Engineering, 2016,135:418-426.
[27] 朱其祥,吴国新,徐守东,等. ZigBee技术在棉花仓库火灾自动报警系统中的应用[J]. 中国棉花加工,2011(6):19-22.
[28] 张青春. 基于Zigbee技术的火灾探测报警传感器网络设计[J]. 中国测试,2013(4):73-75,80.
[29] 魏宏飞,赵慧. 多传感器信息融合技术在火灾报警系统的应用[J]. 现代电子技术,2013(6):139-140,144.
[30] 胡祝格. 基于多传感器信息融合技术的火灾探测报警系统设计与研究[D]. 西安:西安建筑科技大学(硕士学位论文),2013.
[31] 杨晓萍,孙继玮,牛超,等. 数据融合在物联网火灾监测系统中的应用研究[J]. 电子测量技术,2016(3):100-105.
随便看

 

科学优质学术资源、百科知识分享平台,免费提供知识科普、生活经验分享、中外学术论文、各类范文、学术文献、教学资料、学术期刊、会议、报纸、杂志、工具书等各类资源检索、在线阅读和软件app下载服务。

 

Copyright © 2004-2023 puapp.net All Rights Reserved
更新时间:2025/3/16 10:17:21