网站首页  词典首页

请输入您要查询的论文:

 

标题 关于高中数学数列的解题技巧分析
范文 王玉娟


数列求和一直是数列试题的考察重点,也是解答的难点,掌握良好的解题技巧能在考试中缩短解题时间,提升解题的准确性,实现考试成绩的提高,对高中数学学习意义重大。
一、错位相减
例如,已知数列{an},n是正整数,a1=1,an+1=2sn,求数列{an}的通项公式an和前n项和Sn。令n=2、3、4…可求得a2=2、a3=6,a4=18、54…,可知数列{an}在n>1时是等比数列,an=2×3n-2;n=1时,an=1。则Sn=1+2×30+2×31+2×32+2×33+…+2×3n-3+2×3n-2,3Tn=3+2×31+2×32+2×33+…+(n-2)2×3n-3+(n-1)2×3n-2+2×3n-1,则数列{an}的前n项和=(3Tn-Tn)/2=3n-1(n>1);1(n= 1)。由于数列{an}并不是等比数列,所以等比数列求和公式Sn=a1(1-qn)/(1-q)在此并不适用,不过我们发现当n>时,数列{an}是等比数列,且公比是3,这是我们取3倍Sn的原因,也是运用错位相减法求Sn的关键。
二、分组法求和
例如,已知数列{an},n是正整数,通项公式an=n+3n,求数列{an}的前n项和Sn。令n=1、2、3……可得a1=4、a2=11、a3=30…,那么可知数列{an}既不是等比数列也不是等差数列。不过经观察可发现,n+3n的前半部分n是等差数列,后半部分3n是等比数列,设bn=n,cn=3n,那么an=bn+cn。等差数列{bn}的前n项和Ln=n+n(n-1)/2;等比数列{cn}的前n项和Mn=3(3n-1)/2,则Sn=Ln+Mn =(3n+1+n2+n-3)/2。对于不用性质组成的数列,进行拆分后求各个子数列的前n项和,然后把各个字数列的前n项和相加即为原来的数列的前n项和。解答这类数列的关键是拆分,可拆封成等差数列+等差数列、等差数列+等比数列、等比数列+等比数列的形式,不要拘泥于一种拆分形式,可灵活运用。
三、合并法求和
例如,已知数列{an},n是正整数,a1=2、a2=7,a3=5,an+2=an+1-an,求S1999。令n=4、5、6…,可得a4=-2、a5=-7、a6=-5…,那么可知数列{an}既不是等比数列也不是等差数列。不过经观察可发现,a6m+1=2、a6m+2=7、a6m+3=5、a6m+4=-2、a6m+5=-7、a6m+6=-5(k为正整数),也就是说S1998=0,则S1999=0+a1999。因为1999= 6×333+1,所以a1999=2,则S1999=2。运用合并法求和的关键是找出数列中特殊项,然后合并特殊项,使其相互消减,然后把剩下的各项相加即求出前n项和,最终顺利地解决这个数列问题。
四、反序相加法求和
例如:求cos21°+cos22°+cos23°+…+cos289°,设式①:S=cos21°+cos22°+cos23°+…+cos289°,把式①右边反过来得式②:S=cos289°+cos288°+cos287°+…+cos21°,式①式②相加得:2S=cos21°+cos289°+cos22°+cos288°+cos23°+cos287+…+cos289°+cos21°。因为cosx=sin(90°-x),cos2x+sin2x=1,所以2S=cos21°+cos289°+cos22°+cos288°+cos23°+cos287+…+cos289°+cos21°=cos21°+sin21°+cos22°+sin22°+cos23°+sin23°+…+cos289°+sin21°=89,所以S=44.5,即求出cos21°+cos22°+cos23°+…+cos289°的值。应用反序相加法求和的关键是正序公式的各项与其对应的反序各项的和是固定值,然后求出总值并除以2即为所求数列的和。
五、裂项法求和
例如,已知数列{an},n是正整数,an= ? ? ? ? ? ? ?,求{an}的前n项和Sn。
对an= ? ? ? ? ? ?进行裂项可得:
an=
则Sn=
运用裂项法求和的关键裂项的形式要对,以确保除了除公式中间的数据相加等于固定数值,与首数值和末尾数值相加后,求出前n项和。
六、通项求和
例如,求解1+11+111+1111+…+1…11之和,第n项的数值的位数是n。因为1…111= ? (9…999)= ? (10k-1)(k 等于1…111的位数),所以
1+11+111+1111+…+1…11
= ?(101-1)+ ?(102-1)+ ?(103-1)+ ?(104-1)+…+ ?(10n-1)
进行分组求和后:
1+11+111+1111+…+1…11
= ?(101+102+103+104+…+10n)- ?(1 +1+1+1+…+1)(1的个数是n)
= ? ?(10n-1)-
= ? ?(10n+1-10-9n)
运用通项求和的关键是把一个数值拆成两个数值,以便把遵循一个规律的数值集合一起进行求解。
对于数列试题的解答,应在掌握基本概念和性质的基础上进行,否者任何的解题技巧都将无有武之地。此外,也应学习一些经典的数列模型,以便更快地完成试题的解答。
(作者单位:江苏省如皋市薛窑中学)
随便看

 

科学优质学术资源、百科知识分享平台,免费提供知识科普、生活经验分享、中外学术论文、各类范文、学术文献、教学资料、学术期刊、会议、报纸、杂志、工具书等各类资源检索、在线阅读和软件app下载服务。

 

Copyright © 2004-2023 puapp.net All Rights Reserved
更新时间:2025/3/22 16:11:53