标题 | 连续档导线动刚度计算及模型简化 |
范文 | 刘小会 张路飞 陈世民 严波 张晓艳 摘要: 为了揭示输电线路舞动时各档导线之间的相互影响,以绝缘子串及单档导线为子结构,建立了谐波激励下连续档导线运动的微分方程。通过子结构的力和位移连续条件求解方程,提出了连续档输电线动刚度的计算方法。结合有限元方法验证了连续档输电线动刚度计算方法的准确性。结果表明,当动刚度出现极大值时,谐波激励频率和该连续档导线的自振频率相同,依据这一结论可以获取连续档导线的自振频率。同时,以此为基础讨论了将连续档导线等效为弹簧质点的可能性,具体算例表明在保证两者之间静刚度和频率相同时,通过调整弹簧刚度比和阻尼可以使两者之间的动刚度曲线一致。关键词: 输电线; 舞动; 动刚度; 连续档; ABAQUS 中图分类号: TM752+.5; TB123文献标志码: A文章编号: 10044523(2016)04072010 DOI:10.16385/j.cnki.issn.10044523.2016.04.020 引言 导线覆冰后在风激励下会产生低频(0.1~3 Hz)和大振幅(约为导线直径的15~500倍)的自激振动,即舞动。当舞动持续时间较长时会对高压输电线路安全运行造成极大的危害,严重时可导致大面积供电瘫痪。近年受极端天气影响,中国西南、华中、华南等地高压电网均发生了不同程度的舞动。 目前国内外对输电线舞动的研究主要集中在用非线性动力学理论、有限元理论及实验的方法研究舞动发生的机理、结构参数及气动力参数对舞动的影响。有限元方法是研究舞动的重要手段,建立输电线舞动有限元模型时均采用等效弹簧作为舞动档导线的约束条件[13],以此来考虑相邻档导线的影响。以弹簧作为导线舞动的边界条件,弹簧刚度对舞动幅值有较为明显的影响[45]。单档和多档的舞动数值研究结果[6]表明覆冰导线舞动时相邻档导线对舞动档导线的舞动幅值影响较为明显,考虑到高压输电线路一般都为连续档导线,因此有必要采用等效刚度代替相邻档导线的影响。在理论方面,通过振动力学的定性理论对覆冰输电线的气动稳定性进行判断时,需要采用等效刚度的方式考虑邻档导线的影响[7]。非线性振动的近似解析方法也是研究舞动另一途径,A Luongo[8]等首先将单档导线简化为竖向和扭转的两自由度耦合系统,基于多尺度法分析了单档导线转动振动对舞动的影响。随后国内学者[910]基于两自由度耦合系统运用多尺度法从不同方面分析了覆冰单档导线内共振、分岔等复杂行为。在此基础上有学者[1112]将两自由度系统扩展为三自由度耦合系统,研究了内共振时系统的振动情况。由于连续档导线系统较为复杂,采用解析方法分析导线舞动时均将其简化为单档导线,因此需要采用等效刚度的方法考虑邻档导线的影响。事实上,和舞动档导线相邻的导线一般处于运动状态,采用等效静刚度忽略了相邻档导线的运动效应。 Abstract: In order to reveal the interaction between each span of conductor galloping, the motion differential equation of continuous spans conductor under the harmonic excitation is established by taking insulator string and singlespan conductor as substructure. Continuous conditions for force and displacement of the substructure are utilized to solve the above equation, and then a calculation method for dynamic stiffness of continuous spans transmission line is presented. The accuracy of calculation method for the dynamic stiffness of continuous spans transmission line is proved with the help of finite element method. The result showed that harmonic excitation frequency equals the natural frequency of continuous spans conductor when the dynamic stiffness reaches its maximum value. Based on this conclusion, the natural frequency of continuous spans conductor can be obtained. Moreover, the possibility of simplifying continuous spans conductor as springparticle is discussed on this basis. A specific example given has shown the dynamic stiffness curve of continuous spans conductor and simplified model are uniform by adjusting the spring stiffness ratio and damping under the premise of the same static stiffness and frequency between them. Key words: transmission line; galloping; dynamic stiffness; continuous span; ABAQUS |
随便看 |
|
科学优质学术资源、百科知识分享平台,免费提供知识科普、生活经验分享、中外学术论文、各类范文、学术文献、教学资料、学术期刊、会议、报纸、杂志、工具书等各类资源检索、在线阅读和软件app下载服务。