标题 | 妙用“曲柄连杆”模型破解几何最值问题 |
范文 | 1 问题缘起 近读《中学数学杂志》2017年第6期文章,李玉荣老师在《打造中线破解最值》一文中提出:当直角三角形的斜边一定时,斜边上的中线一定,相关的几何最值问题常常可以借助“斜边上的中线”得以破解.读完此文,感触颇深,深受启发,感觉这类几何最值问题也可类比物理学中的“曲柄连杆机构”来建立数学模型求解. 2 模型来源 如图1所示,该图为一发动机上的“曲柄连杆机构”的横截面图.其工作原理是:曲柄连杆机构在作功行程中把活塞的往复运动转变成曲轴的旋转运动,对外输出动力,而在其他三个行程中,即进气、压缩、排气行程中又把曲轴的旋转运动转变成活塞的往复直线运动. 5 解后反思 综上所述,有些貌似与圆无关的直线型问题,但问题的题设或结论或图形提供了某些圆的性质相似的信息,此时可大胆联想,构造出与题目相关的辅助圆,构建“曲柄连杆”模型往往可化隐为显,化难为易,化繁为简,将直线型问题转化为曲线型问题,将原问题转化为與圆有关的问题加以解决,从而降低问题的难度,使问题获得简解、巧解或新解,拓宽解题思路,迅速找到解题的突破口.借助辅助圆构建“曲柄连杆”模型解题虽然是比较生疏的一种解题方法,但同时又是一种行之有效的解题方法,它也是得到几何问题中特殊的数量关系与位置关系的自然解法,有时解题不能找到很好的解题方法的情况下不妨试一试,也许会给我们解题带来“柳暗花明”. 参考文献 [1]张进.巧添辅助圆 妙解中考题[J].中学数学杂志(初中),2017(2):53-54. [2]金杨建.最值问题(1)[J].中学数学教学参考(中旬),2017(1-2):58-64. [3]邹黎明,周敏峰,浦叙德.“曲柄连杆”模型解决一类最值问题[J].初中数学教与学,2017(2):23-24. |
随便看 |
|
科学优质学术资源、百科知识分享平台,免费提供知识科普、生活经验分享、中外学术论文、各类范文、学术文献、教学资料、学术期刊、会议、报纸、杂志、工具书等各类资源检索、在线阅读和软件app下载服务。