网站首页  词典首页

请输入您要查询的论文:

 

标题 基于ABC—BP模型环境空气质量评价方法
范文

    郗君甫

    摘要:为了提供一种高效准确评价空气质量等级的方法,文中通过蜂群优化算法和BP神经网络优化组合,提出了一种基于ABC-BP模型环境空气质量评价方法,通过仿真实验表明,该方法空气质量等级评价结果准确,具有一定实用性。

    关键词:BP神经网络;蜂群优化算法;空气质量等级评价

    中图分类号:TP311 文献标识码:A 文章编号:1009-3044(2016)19-0229-03

    Environmental Air Quality Assessment Method Based on ABC-BP Model

    XI Jun-fu

    (Information and Engineering Department, Xingtai Polytechnic College, Xingtai 054035, China)

    Abstract: In order to provide a method for accurate and efficient evaluation of the air quality level, in this paper by bee colony optimization algorithm and BP neural network optimization, puts forward a ABC-BP model of environmental air quality assessment method based on, through the simulation experiment show that the method of air quality grade evaluation result is accurate, has a certain practicability.

    Key words: BP neural network; artificial bee colony algorithm; air quality grade evaluation

    1 引言

    随着中国经济社会快速发展,大量有害物质被排放到大气中,空气污染加剧,严重空气污染已对人们的生活、生产活动和健康造成了严重危害。当前复合型、区域性空气污染日益突出,京津冀、长江三角洲、珠江三角洲等区域灰霾现象频繁发生。为了更好地表征我国环境空气质量状况,反映当前复合型大气污染形势,完善了空气质量指数发布方式,迫切需要一个量化、科学、直观、准确评价空气质量优劣的评价体系。该评价体系有利于提高环境空气质量评价工作的科学水平,更好地为公众提供健康指引,推动大气污染防治。

    2012年2月29日,中国环保部颁布了《环境空气质量标准》(GB 3095-2012),该标准形成了对 6 类主要污染物( PM10、 PM2. 5、 O3、 CO、 SO2、 NO2 ) 的全面监测和评价。本文通过蜂群算法和BP神经网络优化、组合,建立ABC-BP模型对影响空气质量的污染指标进行评价,从而更针对性地改善环境空气质量,更好地实施新标准。

    2 相关工作

    2.1 BP神经网路

    BP神经网络是一种多层向前网络,常用的是三层网络结构,其拓扑结构如图1所示。BP算法通过正向传播和误差反向传播两个过程组成[1-2]。

    2.2 空气质量指数

    空气质量指数(AQI)是描述了空气清洁或者污染的程度,以及对健康的影响,其数值越大、级别和类别越高、说明空气污染状况越严重,对人体的健康危害也就越大。AQI评价主要突出单向污染物指标的作用,即空气质量级别取决于某一污染物质量浓度对应的空气质量分指数(IAQI),见表1。

    3 基于ABC-BP环境空气质量评价模型建立

    3.1 ABC-BP环境空气质量评价模型

    建立基于ABC-BP环境空气质量评价模型步骤如下:

    (1) 处理环境空气质量数据。

    (2) 用训练样本数据训练BP神经网络。

    (3) 利用ABC算法优化BP神经网络,计算BP最优连接权值和阈值。

    (4) 使用测试样本数据,通过训练完成的ABC-BP模型进行环境空气质量评价。

    (5) 满足终止条件(达到设定准确率、超过预定最大循环次数),输出空气质量等级,否则返回步骤(3)继续训练ABC-BP模型。

    3.2 ABC-BP环境空气质量评价模型参数优化

    人工蜂群算法是一种新的智能寻优算法[3],该算法是通过蜂群中不同工种蜜蜂之间的协同合作,主要解决在新领域和已知领域进行精确搜索之间矛盾,有效避免局部最优解问题。利用蜂群优化算法优化BP神经网络的连接权值和阈值,具体实现步骤如下:

    4 仿真实验与分析

    4.1 实验数据

    本实验数据来源于中国环境监测总站(http://www.cnemc.cn/)发布的实时数据,采集了邢台市2014年12月12日至2016年6月1日空气质量数据,数据包括PM2.5、PM10、SO2、CO、NO2、O3浓度值、AQI值和级别,前480条数据做训练数据,后面数据做测试数据。空气质量指数级别划分[4],如下表2所示。

    4.2 实验结果与分析

    采用ABC-BP空气质量评价模型,输入六项空气污染物(PM2.5、PM10、SO2、CO、NO2、O3)日均浓度值,为了消除各位数据量级的差异,对数据进行归一处理,转化为[0,1]区间[5],输出为一项,根据空气质量指数级别标准,输出项生成值范围为[0,6],各级输出范围分别是[0,1]、[1,2]、[2,3]、[3-4]、[4-5]、[5-6]。

    经过多次仿真实验,ABC-BP空气质量评价模型中BP神经网络采用6-8-1结构,学习率设定为0.05、误差精度为10-8,=20,=100,=1000,=100。ABC-BP空气质量评价模型评价结果如表3所示。通过仿真实验表明,采用ABC-BP空气质量评价模型评价结果与实际评价等级是一致的,表明该模型精度很高,能够很好满足实际应用需求。

    5 结论

    为了提供一种有效准确评价空气质量等级的方法,提出了基于ABC-BP模型环境空气质量评价方法,使用ABC算法优化BP神经网络,可有效克服局部极值点,避免陷入局部最优,并进行了仿真实验,通过实验数据结果表明,该模型精度很高,能够很好满足空气质量等级评价实际应用需求,具有一定实用性和推广价值。

    参考文献:

    [1] 黄丽.BP 神经网络算法改进及应用研究[D].重庆:重庆师范大学,2008:8-12

    [2] 艾洪福,石营.基于BP人工神经网络的雾霾天气预测研究[J].计算机仿真,2015,32(1):402-405.

    [3] 张冬丽.人工蜂群算法的改进及相关应用研究[D].秦皇岛:燕山大学,2014:3-9.

    [4] 刘杰,杨鹏,吕文生等.基于北京市6类污染物的环境空气质量评价方法[J].安全与环境学报,2015,15(1):310-314.

    [5]于宗艳,韩连涛.免疫粒子群算法优化的环境空气质量评价方法[J].环境工程学报,2013,7(1):4486-4489.

    

随便看

 

科学优质学术资源、百科知识分享平台,免费提供知识科普、生活经验分享、中外学术论文、各类范文、学术文献、教学资料、学术期刊、会议、报纸、杂志、工具书等各类资源检索、在线阅读和软件app下载服务。

 

Copyright © 2004-2023 puapp.net All Rights Reserved
更新时间:2025/2/10 22:03:36